《MySQL 实战45讲》节选第二部分¶
以下内容节选自 “丁奇” 在极客时间的 《MySQL实战45讲》的内容,这是第二部分
10 MySQL为什么有时候会选错索引?¶
前面我们介绍过索引,你已经知道了在 MySQL 中一张表其实是可以支持多个索引的。但是,你写 SQL 语句的时候,并没有主动指定使用哪个索引。也就是说,使用哪个索引是由 MySQL 来确定的。
不知道你有没有碰到过这种情况,一条本来可以执行得很快的语句,却由于 MySQL 选错了索引,而导致执行速度变得很慢?
我们一起来看一个例子吧。
我们先建一个简单的表,表里有 a、b 两个字段,并分别建上索引:
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `a` (`a`),
KEY `b` (`b`)
) ENGINE=InnoDB;
然后,我们往表 t 中插入 10 万行记录,取值按整数递增,即:(1,1,1),(2,2,2),(3,3,3)
直到 (100000,100000,100000)
。
我是用存储过程来插入数据的,这里我贴出来方便你复现:
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=100000)do
insert into t values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
接下来,我们分析一条 SQL 语句:
mysql> select * from t where a between 10000 and 20000;
你一定会说,这个语句还用分析吗,很简单呀,a 上有索引,肯定是要使用索引 a 的。
你说得没错,下面显示的就是使用 explain 命令看到的这条语句的执行情况。
mysql> explain select * from t where a between 10000 and 20000;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| 1 | SIMPLE | t | NULL | range | a | a | 5 | NULL | 10001 | 100.00 | Using index condition |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)
这条查询语句的执行也确实符合预期,key 这个字段值是 a
,表示优化器选择了索引 a。
不过别急,这个案例不会这么简单。在我们已经准备好的包含了 10 万行数据的表上,我们再做如下操作。
%%{init: {"theme":"gray"}}%%
sequenceDiagram
participant Session A
participant Session B
participant Table
Session A ->>Table: start transaction with consistent snapshot
Session B ->>Table: delete from t;
Session B ->>Table: call ibdata();
Session B ->>Table: explain select * from t where a between 10000 and 20000
Session A ->>Table: commit
这里,session A 的操作你已经很熟悉了,它就是开启了一个事务。随后,session B 把数据都删除后,又调用了 idata 这个存储过程,插入了 10 万行数据。
这时候,session B 的查询语句 select * from t where a between 10000 and 20000
就不会再选择索引 a
了。我们可以通过慢查询日志(slow log)来查看一下具体的执行情况。
为了说明优化器选择的结果是否正确,我增加了一个对照,即:使用 force index(a)
来让优化器强制使用索引 a
下面的三条 SQL 语句,就是这个实验过程。
set long_query_time=0;
select * from t where a between 10000 and 20000; /*Q1*/
select * from t force index(a) where a between 10000 and 20000;/*Q2*/
- 第一句,是将慢查询日志的阈值设置为 0,表示这个线程接下来的语句都会被记录入慢查询日志中;
- 第二句,Q1 是 session B 原来的查询;
- 第三句,Q2 是加了
force index(a)
来和 session B 原来的查询语句执行情况对比。
如图 3 所示是这三条 SQL 语句执行完成后的慢查询日志。
# Time: 2018-12-03T10:26:35.711526Z
# User@Host: root[root] @ localhost [127.0.0.1] Id:
4
# Query_time: 0.040877 Lock_time: 0.000151 Rows_sent: 10001 Rows_examined: 100000
SET timestamp=1543832795;
select * from t where a between 10000 and 20000;
# Time: 2018-12-03T10:26:11.0287037
# User@Host: root[root] @ localhost [127.0.0.1] Id:
4
# Query_time: 0.021076 Lock_time: 0.000163 Rows_sent: 10001 Rows_examined: 10001
SET timestamp=1543832771;
select * from t force index(a) where a between 10000 and 20000;
可以看到,Q1 扫描了 10 万行,显然是走了全表扫描,执行时间是 40 毫秒。Q2 扫描了 10001 行,执行了 21 毫秒。也就是说,我们在没有使用 force index
的时候,MySQL 用错了索引,导致了更长的执行时间。
这个例子对应的是我们平常不断地删除历史数据和新增数据的场景。这时,MySQL 竟然会选错索引,是不是有点奇怪呢?今天,我们就从这个奇怪的结果说起吧。
优化器的逻辑¶
在第一篇文章中,我们就提到过,选择索引是优化器的工作。
而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。
当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
我们这个简单的查询语句并没有涉及到临时表和排序,所以 MySQL 选错索引肯定是在判断扫描行数的时候出问题了。
那么,问题就是:扫描行数是怎么判断的?
MySQL 在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。
这个统计信息就是索引的“区分度”。显然,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。
我们可以使用 show index 方法,看到一个索引的基数。如图 4 所示,就是表 t 的 show index 的结果 。虽然这个表的每一行的三个字段值都是一样的,但是在统计信息中,这三个索引的基数值并不同,而且其实都不准确。
mysql> show index from t;
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | Visible | Expression |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
| t | 0 | PRIMARY | 1 | id | A | 100256 | NULL | NULL | | BTREE | | | YES | NULL |
| t | 1 | a | 1 | a | A | 100256 | NULL | NULL | YES | BTREE | | | YES | NULL |
| t | 1 | b | 1 | b | A | 98190 | NULL | NULL | YES | BTREE | | | YES | NULL |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+---------+------------+
那么,MySQL 是怎样得到索引的基数的呢?这里,我给你简单介绍一下 MySQL 采样统计的方法。
为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。
采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。
而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。
在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent
的值来选择:
- 设置为 on 的时候,表示统计信息会持久化存储。这时,默认的 N 是 20,M 是 10。
- 设置为 off 的时候,表示统计信息只存储在内存中。这时,默认的 N 是 8,M 是 16。
由于是采样统计,所以不管 N 是 20 还是 8,这个基数都是很容易不准的。
但,这还不是全部。
你可以从上表中看到,这次的索引统计值(cardinality 列)虽然不够精确,但大体上还是差不多的,选错索引一定还有别的原因。
其实索引统计只是一个输入,对于一个具体的语句来说,优化器还要判断,执行这个语句本身要扫描多少行。
接下来,我们再一起看看优化器预估的,这两个语句的扫描行数是多少。
mysql> explain select * from t where a between 10000 and 20000;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-------------+
| 1 | SIMPLE | t | NULL | ALL | a | NULL | NULL | NULL | 104620| 100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
mysql> explain select * from t force index(a) where a between 10000 and 20000;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| 1 | SIMPLE | t | NULL | range | a | a | 5 | NULL | 37116 | 100.00 | Using index condition |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)
rows 这个字段表示的是预计扫描行数。
其中,Q1 的结果还是符合预期的,rows 的值是 104620;但是 Q2 的 rows 值是 37116,偏差就大了。而图 1 中我们用 explain 命令看到的 rows 是只有 10001 行,是这个偏差误导了优化器的判断。
到这里,可能你的第一个疑问不是为什么不准,而是优化器为什么放着扫描 37000 行的执行计划不用,却选择了扫描行数是 100000 的执行计划呢?
这是因为,如果使用索引 a,每次从索引 a 上拿到一个值,都要回到主键索引上查出整行数据,这个代价优化器也要算进去的。
而如果选择扫描 10 万行,是直接在主键索引上扫描的,没有额外的代价。
优化器会估算这两个选择的代价,从结果看来,优化器认为直接扫描主键索引更快。当然,从执行时间看来,这个选择并不是最优的。
使用普通索引需要把回表的代价算进去,在图 1 执行 explain 的时候,也考虑了这个策略的代价 ,但图 1 的选择是对的。也就是说,这个策略并没有问题。
所以冤有头债有主,MySQL 选错索引,这件事儿还得归咎到没能准确地判断出扫描行数。至于为什么会得到错误的扫描行数,这个原因就作为课后问题,留给你去分析了。
既然是统计信息不对,那就修正。analyze table t
命令,可以用来重新统计索引信息。我们来看一下执行效果。
mysql> analyze table t;
+--------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------+---------+----------+----------+
| test.t | analyze | status | OK |
+--------+---------+----------+----------+
1 row in set (0.00 sec)
mysql> explain select * from t where a between 10000 and 20000;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
| 1 | SIMPLE | t | NULL | range | a | a | 5 | NULL | 10001 | 100.00 | Using index condition |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)
这回对了。
所以在实践中,如果你发现 explain 的结果预估的 rows 值跟实际情况差距比较大,可以采用这个方法来处理。
其实,如果只是索引统计不准确,通过 analyze 命令可以解决很多问题,但是前面我们说了,优化器可不止是看扫描行数。
依然是基于这个表 t,我们看看另外一个语句:
select * from t where (a between 1 and 1000)
and (b between 50000 and 100000) order by b limit 1;
从条件上看,这个查询没有符合条件的记录,因此会返回空集合。
在开始执行这条语句之前,你可以先设想一下,如果你来选择索引,会选择哪一个呢?
为了便于分析,我们先来看一下 a、b 这两个索引的结构图。
图 7 a、b 索引的结构图
如果使用索引 a 进行查询,那么就是扫描索引 a 的前 1000 个值,然后取到对应的 id,再到主键索引上去查出每一行,然后根据字段 b 来过滤。显然这样需要扫描 1000 行。
如果使用索引 b 进行查询,那么就是扫描索引 b 的最后 50001 个值,与上面的执行过程相同,也是需要回到主键索引上取值再判断,所以需要扫描 50001 行。
所以你一定会想,如果使用索引 a 的话,执行速度明显会快很多。那么,下面我们就来看看到底是不是这么一回事儿。
图 8 是执行 explain 的结果。
mysql> explain select * from t where (a between 1 and 1000) and (b between 50000 and 100000) order by b limit 1;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+------------------------------------+
| 1 | SIMPLE | t | NULL | range | a,b | b | 5 | NULL | 50128 | 1.00 | Using index condition; Using where |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+------------------------------------+
1 row in set, 1 warning (0.00 sec)
可以看到,返回结果中 key 字段显示,这次优化器选择了索引 b,而 rows 字段显示需要扫描的行数是 50128。
从这个结果中,你可以得到两个结论:
- 扫描行数的估计值依然不准确;
- 这个例子里 MySQL 又选错了索引。
索引选择异常和处理¶
其实大多数时候优化器都能找到正确的索引,但偶尔你还是会碰到我们上面举例的这两种情况:原本可以执行得很快的 SQL 语句,执行速度却比你预期的慢很多,你应该怎么办呢?
一种方法是,像我们第一个例子一样,采用 force index 强行选择一个索引。MySQL 会根据词法解析的结果分析出可能可以使用的索引作为候选项,然后在候选列表中依次判断每个索引需要扫描多少行。如果 force index 指定的索引在候选索引列表中,就直接选择这个索引,不再评估其他索引的执行代价。
我们来看看第二个例子。刚开始分析时,我们认为选择索引 a 会更好。现在,我们就来看看执行效果:
mysql> select * from t where a between 1 and 1000 and b between 50000 and 100000 order by b limit 1;
Empty set (0.04 sec)
mysql> select * from t force index(a) where a between 1 and 1000 and b between 50000 and 100000 order by b limit 1;
Empty set (0.01 sec)
可以看到,原本语句需要执行 0.04 秒,而当你使用 force index(a)
的时候,只用了 0.01 秒,比优化器的选择快了 4 倍。
也就是说,优化器没有选择正确的索引,force index 起到了“矫正”的作用。
不过很多程序员不喜欢使用 force index,一来这么写不优美,二来如果索引改了名字,这个语句也得改,显得很麻烦。而且如果以后迁移到别的数据库的话,这个语法还可能会不兼容。
但其实使用 force index 最主要的问题还是变更的及时性。因为选错索引的情况还是比较少出现的,所以开发的时候通常不会先写上 force index。而是等到线上出现问题的时候,你才会再去修改 SQL 语句、加上 force index。但是修改之后还要测试和发布,对于生产系统来说,这个过程不够敏捷。
所以,数据库的问题最好还是在数据库内部来解决。那么,在数据库里面该怎样解决呢?
既然优化器放弃了使用索引 a,说明 a 还不够合适,所以
第二种方法就是,我们可以考虑修改语句,引导 MySQL 使用我们期望的索引。
比如,在这个例子里,显然把 order by b limit 1
改成 order by b,a limit 1
,语义的逻辑是相同的。
我们来看看改之后的效果:
mysql> explain select * from t where a between 1 and 1000 and b between 50000 and 100000 order by b limit 1;
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+
| 1 | SIMPLE | t | NULL | range | a,b | b | 5 | NULL | 50128 | 1.00 |
+----+-------------+-------+------------+-------+---------------+------+---------+------+-------+----------+
1 row in set, 1 warning (0.00 sec)
mysql> explain select * from t where a between 1 and 1000 and b between 50000 and 100000 order by b,a limit 1;
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+
| 1 | SIMPLE | t | NULL | range | a,b | a | 5 | NULL | 1000 | 50.00 |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+
1 row in set, 1 warning (0.00 sec)
之前优化器选择使用索引 b,是因为它认为使用索引 b 可以避免排序(b 本身是索引,已经是有序的了,如果选择索引 b 的话,不需要再做排序,只需要遍历),所以即使扫描行数多,也判定为代价更小。
现在 order by b,a 这种写法,要求按照 b,a 排序,就意味着使用这两个索引都需要排序。因此,扫描行数成了影响决策的主要条件,于是此时优化器选了只需要扫描 1000 行的索引 a。
当然,这种修改并不是通用的优化手段,只是刚好在这个语句里面有 limit 1,因此如果有满足条件的记录, order by b limit 1 和 order by b,a limit 1 都会返回 b 是最小的那一行,逻辑上一致,才可以这么做。
如果你觉得修改语义这件事儿不太好,这里还有一种改法,下面是执行效果。
mysql> select * from (select * from t where (a between 1 and 1000)
and (b between 50000 and 100000) order by b limit 100) alias limit 1;
+----+-------------+------------+------------+-------+---------------+------+---------+------+------+----------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
+----+-------------+------------+------------+-------+---------------+------+---------+------+------+----------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 |
| 2 | DERIVED | t | NULL | range | a,b | a | 5 | NULL | 1000 | 50.00 |
+----+-------------+------------+------------+-------+---------------+------+---------+------+------+----------+
2 rows in set, 1 warning (0.00 sec)
在这个例子里,我们用 limit 100 让优化器意识到,使用 b 索引代价是很高的。其实是我们根据数据特征诱导了一下优化器,也不具备通用性。
第三种方法是,在有些场景下,我们可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。
不过,在这个例子中,我没有找到通过新增索引来改变优化器行为的方法。这种情况其实比较少,尤其是经过 DBA 索引优化过的库,再碰到这个 bug,找到一个更合适的索引一般比较难。
如果我说还有一个方法是删掉索引 b,你可能会觉得好笑。但实际上我碰到过两次这样的例子,最终是 DBA 跟业务开发沟通后,发现这个优化器错误选择的索引其实根本没有必要存在,于是就删掉了这个索引,优化器也就重新选择到了正确的索引。
小结¶
今天我们一起聊了聊索引统计的更新机制,并提到了优化器存在选错索引的可能性。
对于由于索引统计信息不准确导致的问题,你可以用 analyze table
来解决。
而对于其他优化器误判的情况,你可以在应用端用 force index
来强行指定索引,也可以通过修改语句来引导优化器,还可以通过增加或者删除索引来绕过这个问题。
你可能会说,今天这篇文章后面的几个例子,怎么都没有展开说明其原理。我要告诉你的是,今天的话题,我们面对的是 MySQL 的 bug,每一个展开都必须深入到一行行代码去量化,实在不是我们在这里应该做的事情。
最后,我给你留下一个思考题。前面我们在构造第一个例子的过程中,通过 session A 的配合,让 session B 删除数据后又重新插入了一遍数据,然后就发现 explain 结果中,rows 字段从 10001 变成 37000 多。
而如果没有 session A 的配合,只是单独执行 delete from t 、call idata()、explain 这三句话,会看到 rows 字段其实还是 10000 左右。你可以自己验证一下这个结果。
这是什么原因呢?也请你分析一下吧。
11 怎么给字符串字段加索引?¶
现在,几乎所有的系统都支持邮箱登录,如何在邮箱这样的字段上建立合理的索引,是我们今天要讨论的问题。
假设,你现在维护一个支持邮箱登录的系统,用户表是这么定义的:
mysql> create table SUser(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
由于要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select f1, f2 from SUser where email='xxx';
从第 4 和第 5 篇讲解索引的文章中,我们可以知道,如果 email 这个字段上没有索引,那么这个语句就只能做全表扫描。
同时,MySQL 是支持前缀索引的,也就是说,你可以定义字符串的一部分作为索引。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。
比如,这两个在 email 字段上创建索引的语句:
mysql> alter table SUser add index index1(email); -- 或
mysql> alter table SUser add index index2(email(6));
第一个语句创建的 index1 索引里面,包含了每个记录的整个字符串;而第二个语句创建的 index2 索引里面,对于每个记录都是只取前 6 个字节。
那么,这两种不同的定义在数据结构和存储上有什么区别呢?如图 2 和 3 所示,就是这两个索引的示意图。
图 1 email 索引结构
图 2 email(6) 索引结构
从图中你可以看到,由于 email(6) 这个索引结构中每个邮箱字段都只取前 6 个字节(即:zhangs),所以占用的空间会更小,这就是使用前缀索引的优势。
但,这同时带来的损失是,可能会增加额外的记录扫描次数。
接下来,我们再看看下面这个语句,在这两个索引定义下分别是怎么执行的。
select id,name,email from SUser where email='zhangssxyz@xxx.com';
如果使用的是 index1(即 email 整个字符串的索引结构),执行顺序是这样的:
- 从 index1 索引树找到满足索引值是
zhangssxyz@xxx.com
的这条记录,取得 ID2 的值; - 到主键上查到主键值是 ID2 的行,判断 email 的值是正确的,将这行记录加入结果集;
- 取 index1 索引树上刚刚查到的位置的下一条记录,发现已经不满足
email='zhangssxyz@xxx.com'
的条件了,循环结束。
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是 index2(即 email(6) 索引结构),执行顺序是这样的:
- 从 index2 索引树找到满足索引值是
zhangs
的记录,找到的第一个是 ID1; - 到主键上查到主键值是 ID1 的行,判断出 email 的值不是
zhangssxyz@xxx.com
,这行记录丢弃; - 取 index2 上刚刚查到的位置的下一条记录,发现仍然是
zhangs
,取出 ID2,再到 ID 索引上取整行然后判断,这次值对了,将这行记录加入结果集; - 重复上一步,直到在 idxe2 上取到的值不是
zhangs
时,循环结束。
在这个过程中,要回主键索引取 4 次数据,也就是扫描了 4 行。
通过这个对比,你很容易就可以发现,使用前缀索引后,可能会导致查询语句读数据的次数变多。
但是,对于这个查询语句来说,如果你定义的 index2 不是 email(6) 而是 email(7),也就是说取 email 字段的前 7 个字节来构建索引的话,即满足前缀 zhangss
的记录只有一个,也能够直接查到 ID2,只扫描一行就结束了。
也就是说**使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。**
于是,你就有个问题:当要给字符串创建前缀索引时,有什么方法能够确定我应该使用多长的前缀呢?
实际上,我们在建立索引时关注的是区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。因此,我们可以通过统计索引上有多少个不同的值来判断要使用多长的前缀。
首先,你可以使用下面这个语句,算出这个列上有多少个不同的值:
mysql> select count(distinct email) as L from SUser;
然后,依次选取不同长度的前缀来看这个值,比如我们要看一下 4~7 个字节的前缀索引,可以用这个语句:
mysql> select
count(distinct left(email,4))as L4,
count(distinct left(email,5))as L5,
count(distinct left(email,6))as L6,
count(distinct left(email,7))as L7,
from SUser;
当然,使用前缀索引很可能会损失区分度,所以你需要预先设定一个可以接受的损失比例,比如 5%。然后,在返回的 L4~L7 中,找出不小于 L * 95% 的值,假设这里 L6、L7 都满足,你就可以选择前缀长度为 6。
前缀索引对覆盖索引的影响¶
前面我们说了使用前缀索引可能会增加扫描行数,这会影响到性能。其实,前缀索引的影响不止如此,我们再看一下另外一个场景。
你先来看看这个 SQL 语句:
select id, email from SUser where email='zhangssxyz@xxx.com';
与前面例子中的 SQL 语句
select id, name, email from SUser where email='zhangssxyz@xxx.com';
相比,这个语句只要求返回 id 和 email 字段。
所以,如果使用 index1(即 email 整个字符串的索引结构)的话,可以利用覆盖索引,从 index1 查到结果后直接就返回了,不需要回到 ID 索引再去查一次。而如果使用 index2(即 email(6) 索引结构)的话,就不得不回到 ID 索引再去判断 email 字段的值。
即使你将 index2 的定义修改为 email(18)
的前缀索引,这时候虽然 index2 已经包含了所有的信息,但 InnoDB 还是要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息。
也就是说,使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
其他方式¶
对于类似于邮箱这样的字段来说,使用前缀索引的效果可能还不错。但是,遇到前缀的区分度不够好的情况时,我们要怎么办呢?
比如,我们国家的身份证号,一共 18 位,其中前 6 位是地址码,所以同一个县的人的身份证号前 6 位一般会是相同的。
假设你维护的数据库是一个市的公民信息系统,这时候如果对身份证号做长度为 6 的前缀索引的话,这个索引的区分度就非常低了。
按照我们前面说的方法,可能你需要创建长度为 12 以上的前缀索引,才能够满足区分度要求。
但是,索引选取的越长,占用的磁盘空间就越大,相同的数据页能放下的索引值就越少,搜索的效率也就会越低。
那么,如果我们能够确定业务需求里面只有按照身份证进行等值查询的需求,还有没有别的处理方法呢?这种方法,既可以占用更小的空间,也能达到相同的查询效率。
答案是,有的。
第一种方式是使用倒序存储。如果你存储身份证号的时候把它倒过来存,每次查询的时候,你可以这么写:
mysql> select field_list from t where id_card = reverse('input_id_card_string');
由于身份证号的最后 6 位没有地址码这样的重复逻辑,所以最后这 6 位很可能就提供了足够的区分度。当然了,实践中你不要忘记使用 count(distinct)
方法去做个验证。
第二种方式是使用 hash 字段。你可以在表上再创建一个整数字段,来保存身份证的校验码,同时在这个字段上创建索引。
mysql> alter table t add id_card_crc int unsigned, add index(id_card_crc);
然后每次插入新记录的时候,都同时用 crc32()
这个函数得到校验码填到这个新字段。由于校验码可能存在冲突,也就是说两个不同的身份证号通过 crc32()
函数得到的结果可能是相同的,所以你的查询语句 where 部分要判断 id_card 的值是否精确相同。
mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_card='input_id_card_string'
这样,索引的长度变成了 4 个字节,比原来小了很多。
接下来,我们再一起看看**使用倒序存储和使用 hash 字段这两种方法的异同点。**
首先,它们的相同点是,都不支持范围查询。倒序存储的字段上创建的索引是按照倒序字符串的方式排序的,已经没有办法利用索引方式查出身份证号码在 [ID_X, ID_Y]
的所有市民了。同样地,hash 字段的方式也只能支持等值查询。
它们的区别,主要体现在以下三个方面:
- 从占用的额外空间来看,倒序存储方式在主键索引上,不会消耗额外的存储空间,而 hash 字段方法需要增加一个字段。当然,倒序存储方式使用 4 个字节的前缀长度应该是不够的,如果再长一点,这个消耗跟额外这个 hash 字段也差不多抵消了。
- 在 CPU 消耗方面,倒序方式每次写和读的时候,都需要额外调用一次 reverse 函数,而 hash 字段的方式需要额外调用一次 crc32() 函数。如果只从这两个函数的计算复杂度来看的话,reverse 函数额外消耗的 CPU 资源会更小些。
- 从查询效率上看,使用 hash 字段方式的查询性能相对更稳定一些。因为 crc32 算出来的值虽然有冲突的概率,但是概率非常小,可以认为每次查询的平均扫描行数接近 1。而倒序存储方式毕竟还是用的前缀索引的方式,也就是说还是会增加扫描行数。
小结¶
在今天这篇文章中,我跟你聊了聊字符串字段创建索引的场景。我们来回顾一下,你可以使用的方式有:
- 直接创建完整索引,这样可能比较占用空间;
- 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;
- 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题;
- 创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。
在实际应用中,你要根据业务字段的特点选择使用哪种方式。
12 为什么我的MySQL会“抖”一下?¶
平时的工作中,不知道你有没有遇到过这样的场景,一条 SQL 语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不只随机,而且持续时间还很短。
看上去,这就像是数据库“抖”了一下。今天,我们就一起来看一看这是什么原因。
你的 SQL 语句为什么变“慢”了¶
在前面第 2 篇文章[《日志系统:一条 SQL 更新语句是如何执行的?》]中,我为你介绍了 WAL 机制。现在你知道了,InnoDB 在处理更新语句的时候,只做了写日志这一个磁盘操作。这个日志叫作 redo log(重做日志),也就是《孔乙己》里咸亨酒店掌柜用来记账的粉板,在更新内存写完 redo log 后,就返回给客户端,本次更新成功。
做下类比的话,掌柜记账的账本是数据文件,记账用的粉板是日志文件(redo log),掌柜的记忆就是内存。
掌柜总要找时间把账本更新一下,这对应的就是把内存里的数据写入磁盘的过程,术语就是 flush。在这个 flush 操作执行之前,孔乙己的赊账总额,其实跟掌柜手中账本里面的记录是不一致的。因为孔乙己今天的赊账金额还只在粉板上,而账本里的记录是老的,还没把今天的赊账算进去。
当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。
不论是脏页还是干净页,都在内存中。在这个例子里,内存对应的就是掌柜的记忆。
接下来,我们用一个示意图来展示一下“孔乙己赊账”的整个操作过程。假设原来孔乙己欠账 10 文,这次又要赊 9 文。
图 1 “孔乙己赊账”更新和 flush 过程
回到文章开头的问题,你不难想象,平时执行很快的更新操作,其实就是在写内存和日志,而 MySQL 偶尔“抖”一下的那个瞬间,可能就是在刷脏页(flush)。
那么,什么情况会引发数据库的 flush 过程呢?
我们还是继续用咸亨酒店掌柜的这个例子,想一想:掌柜在什么情况下会把粉板上的赊账记录改到账本上?
- 第一种场景是,粉板满了,记不下了。这时候如果再有人来赊账,掌柜就只得放下手里的活儿,将粉板上的记录擦掉一些,留出空位以便继续记账。当然在擦掉之前,他必须先将正确的账目记录到账本中才行。 这个场景,对应的就是 InnoDB 的 redo log 写满了。这时候系统会停止所有更新操作,把 checkpoint 往前推进,redo log 留出空间可以继续写。我在第二讲画了一个 redo log 的示意图,这里我改成环形,便于大家理解。
图 2 redo log 状态图
checkpoint 可不是随便往前修改一下位置就可以的。比如图 2 中,把 checkpoint 位置从 CP 推进到 CP’,就需要将两个点之间的日志(浅绿色部分),对应的所有脏页都 flush 到磁盘上。之后,图中从 write pos 到 CP’之间就是可以再写入的 redo log 的区域。
- 第二种场景是,这一天生意太好,要记住的事情太多,掌柜发现自己快记不住了,赶紧找出账本把孔乙己这笔账先加进去。 这种场景,对应的就是系统内存不足。当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。 你一定会说,这时候难道不能直接把内存淘汰掉,下次需要请求的时候,从磁盘读入数据页,然后拿 redo log 出来应用不就行了?这里其实是从性能考虑的。如果刷脏页一定会写盘,就保证了每个数据页有两种状态:
- 一种是内存里存在,内存里就肯定是正确的结果,直接返回;
- 另一种是内存里没有数据,就可以肯定数据文件上是正确的结果,读入内存后返回。 这样的效率最高。
- 第三种场景是,生意不忙的时候,或者打烊之后。这时候柜台没事,掌柜闲着也是闲着,不如更新账本。 这种场景,对应的就是 MySQL 认为系统“空闲”的时候。当然,MySQL“这家酒店”的生意好起来可是会很快就能把粉板记满的,所以“掌柜”要合理地安排时间,即使是“生意好”的时候,也要见缝插针地找时间,只要有机会就刷一点“脏页”。
- 第四种场景是,年底了咸亨酒店要关门几天,需要把账结清一下。这时候掌柜要把所有账都记到账本上,这样过完年重新开张的时候,就能就着账本明确账目情况了。 这种场景,对应的就是 MySQL 正常关闭的情况。这时候,MySQL 会把内存的脏页都 flush 到磁盘上,这样下次 MySQL 启动的时候,就可以直接从磁盘上读数据,启动速度会很快。
接下来,你可以分析一下上面四种场景对性能的影响。
其中,第三种情况是属于 MySQL 空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。这两种情况下,你不会太关注“性能”问题。所以这里,我们主要来分析一下前两种场景下的性能问题。
第一种是“redo log 写满了,要 flush 脏页”,这种情况是 InnoDB 要尽量避免的。因为出现这种情况的时候,整个系统就不能再接受更新了,所有的更新都必须堵住。如果你从监控上看,这时候更新数会跌为 0。
第二种是“内存不够用了,要先将脏页写到磁盘”,这种情况其实是常态。InnoDB 用缓冲池(buffer pool)管理内存,缓冲池中的内存页有三种状态:
- 第一种是,还没有使用的;
- 第二种是,使用了并且是干净页;
- 第三种是,使用了并且是脏页。
InnoDB 的策略是尽量使用内存,因此对于一个长时间运行的库来说,未被使用的页面很少。
而当要读入的数据页没有在内存的时候,就必须到缓冲池中申请一个数据页。这时候只能把最久不使用的数据页从内存中淘汰掉:如果要淘汰的是一个干净页,就直接释放出来复用;但如果是脏页呢,就必须将脏页先刷到磁盘,变成干净页后才能复用。
所以,刷脏页虽然是常态,但是出现以下这两种情况,都是会明显影响性能的:
- 一个查询要淘汰的脏页个数太多,会导致查询的响应时间明显变长;
- 日志写满,更新全部堵住,写性能跌为 0,这种情况对敏感业务来说,是不能接受的。
所以,InnoDB 需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
InnoDB 刷脏页的控制策略¶
接下来,我就来和你说说 InnoDB 脏页的控制策略,以及和这些策略相关的参数。
首先,你要正确地告诉 InnoDB 所在主机的 IO 能力,这样 InnoDB 才能知道需要全力刷脏页的时候,可以刷多快。
这就要用到 innodb_io_capacity
这个参数了,它会告诉 InnoDB 你的磁盘能力。这个值我建议你设置成磁盘的 IOPS。磁盘的 IOPS 可以通过 fio 这个工具来测试,下面的语句是我用来测试磁盘随机读写的命令:
fio -filename=mytest.img -direct=1 -iodepth 1 \
-thread -rw=randrw -ioengine=psync -bs=16k \
-size=500M -numjobs=10 -runtime=10 \
-group_reporting -name=mytest
其实,因为没能正确地设置 innodb_io_capacity
参数,而导致的性能问题也比比皆是。之前,就曾有其他公司的开发负责人找我看一个库的性能问题,说 MySQL 的写入速度很慢,TPS 很低,但是数据库主机的 IO 压力并不大。经过一番排查,发现罪魁祸首就是这个参数的设置出了问题。
他的主机磁盘用的是 SSD,但是 innodb_io_capacity
的值设置的是 300。于是,InnoDB 认为这个系统的能力就这么差,所以刷脏页刷得特别慢,甚至比脏页生成的速度还慢,这样就造成了脏页累积,影响了查询和更新性能。
虽然我们现在已经定义了“全力刷脏页”的行为,但平时总不能一直是全力刷吧?毕竟磁盘能力不能只用来刷脏页,还需要服务用户请求。所以接下来,我们就一起看看 InnoDB 怎么控制引擎按照“全力”的百分比来刷脏页。
根据我前面提到的知识点,试想一下,如果你来设计策略控制刷脏页的速度,会参考哪些因素呢?
这个问题可以这么想,如果刷太慢,会出现什么情况?首先是内存脏页太多,其次是 redo log 写满。
所以,InnoDB 的刷盘速度就是要参考这两个因素:一个是脏页比例,一个是 redo log 写盘速度。
InnoDB 会根据这两个因素先单独算出两个数字。
参数 innodb_max_dirty_pages_pct
是脏页比例上限,MySQL 5.7 默认值是 75%, 8.0 则变成了 90%。InnoDB 会根据当前的脏页比例(假设为 M),算出一个范围在 0 到 100 之间的数字,计算这个数字的伪代码类似这样:
F1(M)
{
if M>=innodb_max_dirty_pages_pct then
return 100;
return 100*M/innodb_max_dirty_pages_pct;
}
InnoDB 每次写入的日志都有一个序号,当前写入的序号跟 checkpoint 对应的序号之间的差值,我们假设为 N。InnoDB 会根据这个 N 算出一个范围在 0 到 100 之间的数字,这个计算公式可以记为 F2(N)。F2(N) 算法比较复杂,你只要知道 N 越大,算出来的值越大就好了。
然后,根据上述算得的 F1(M) 和 F2(N) 两个值,取其中较大的值记为 R,之后引擎就可以按照 innodb_io_capacity 定义的能力乘以 R% 来控制刷脏页的速度。
上述的计算流程比较抽象,不容易理解,所以我画了一个简单的流程图。图中的 F1、F2 就是上面我们通过脏页比例和 redo log 写入速度算出来的两个值。
%%{ init: {"flowchart": {"curve": "catmullRom"}}}%%
graph TB
begin((" "))
begin --> M("脏页比例M<br/>max_dirty_pages_pct")
begin --> N("(当前日志序列 - checkponit) N")
M --> F1
N --> F2
F1 --> R["R = max{F1,F2}"]
F2 --> R
R --> refresh("按照 R% 速度刷新脏页")
refresh --> over((" "))
over .-> begin
图 3 InnoDB 刷脏页速度策略
现在你知道了,InnoDB 会在后台刷脏页,而刷脏页的过程是要将内存页写入磁盘。所以,无论是你的查询语句在需要内存的时候可能要求淘汰一个脏页,还是由于刷脏页的逻辑会占用 IO 资源并可能影响到了你的更新语句,都可能是造成你从业务端感知到 MySQL“抖”了一下的原因。
要尽量避免这种情况,你就要合理地设置 innodb_io_capacity
的值,并且**平时要多关注脏页比例,不要让它经常接近 75%**。
其中,脏页比例是通过 Innodb_buffer_pool_pages_dirty/Innodb_buffer_pool_pages_total
得到的,具体的命令参考下面的代码:
mysql> set global show_compatibility_56=1; -- turn on if version > 5.7.6
mysql> SELECT VARIABLE_VALUE / (
SELECT VARIABLE_VALUE * 1.0
FROM information_schema.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Innodb_buffer_pool_pages_total'
) AS ratio
FROM information_schema.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty';
接下来,我们再看一个有趣的策略。
一旦一个查询请求需要在执行过程中先 flush 掉一个脏页时,这个查询就可能要比平时慢了。而 MySQL 中的一个机制,可能让你的查询会更慢:在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉;而且这个把“邻居”拖下水的逻辑还可以继续蔓延,也就是对于每个邻居数据页,如果跟它相邻的数据页也还是脏页的话,也会被放到一起刷。
在 InnoDB 中,innodb_flush_neighbors
参数就是用来控制这个行为的,值为 1 的时候会有上述的“连坐”机制,值为 0 时表示不找邻居,自己刷自己的。
找“邻居”这个优化在机械硬盘时代是很有意义的,可以减少很多随机 IO。机械硬盘的随机 IOPS 一般只有几百,相同的逻辑操作减少随机 IO 就意味着系统性能的大幅度提升。
而如果使用的是 SSD 这类 IOPS 比较高的设备的话,我就建议你把 innodb_flush_neighbors
的值设置成 0。因为这时候 IOPS 往往不是瓶颈,而“只刷自己”,就能更快地执行完必要的刷脏页操作,减少 SQL 语句响应时间。
在 MySQL 8.0 中,innodb_flush_neighbors
参数的默认值已经是 0 了。
小结¶
今天这篇文章,我延续第 2 篇中介绍的 WAL 的概念,和你解释了这个机制后续需要的刷脏页操作和执行时机。利用 WAL 技术,数据库将随机写转换成了顺序写,大大提升了数据库的性能。
但是,由此也带来了内存脏页的问题。脏页会被后台线程自动 flush,也会由于数据页淘汰而触发 flush,而刷脏页的过程由于会占用资源,可能会让你的更新和查询语句的响应时间长一些。在文章里,我也给你介绍了控制刷脏页的方法和对应的监控方式。
13 为什么表数据删掉一半,表文件大小不变?¶
经常会有同学来问我,我的数据库占用空间太大,我把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变?
那么今天,我就和你聊聊数据库表的空间回收,看看如何解决这个问题。
这里,我们还是针对 MySQL 中应用最广泛的 InnoDB 引擎展开讨论。一个 InnoDB 表包含两部分,即:表结构定义和数据。在 MySQL 8.0 版本以前,表结构是存在以 .frm
为后缀的文件里。
而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小,所以我们今天主要讨论的是表数据。
接下来,我会先和你说明为什么简单地删除表数据达不到表空间回收的效果,然后再和你介绍正确回收空间的方法。
参数 innodb_file_per_table
¶
表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数 innodb_file_per_table
控制的:
- 这个参数设置为
OFF
表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起; - 这个参数设置为
ON
表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。
从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。
我建议你不论使用 MySQL 的哪个版本,都将这个值设置为 ON。
因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table
命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。
所以,将 innodb_file_per_table
设置为 ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的。
我们在删除整个表的时候,可以使用 drop table
命令回收表空间。但是,我们遇到的更多的删除数据的场景是删除某些行,这时就遇到了我们文章开头的问题:表中的数据被删除了,但是表空间却没有被回收。
我们要彻底搞明白这个问题的话,就要从数据删除流程说起了。
数据删除流程¶
我们先再来看一下 InnoDB 中一个索引的示意图。在前面第4和第5篇文章中,我和你介绍索引时曾经提到过,InnoDB 里的数据都是用 B+ 树的结构组织的。
假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。
现在,你已经知道了 InnoDB 的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?
答案是,整个数据页就可以被复用了。
但是,数据页的复用跟记录的复用是不同的。
记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4 这条记录被删除后,如果插入一个 ID 是 400 的行,可以直接复用这个空间。但如果插入的是一个 ID 是 800 的行,就不能复用这个位置了。
而当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。以图 1 为例,如果将数据页 page A 上的所有记录删除以后,page A 会被标记为可复用。这时候如果要插入一条 ID=50 的记录需要使用新页的时候,page A 是可以被复用的。
如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。
进一步地,如果我们用 delete
命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
你现在知道了,delete
命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete
命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。
实际上,不止是删除数据会造成空洞,插入数据也会。
如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造成索引的数据页分裂。
假设图 1 中 page A 已经满了,这时我要再插入一行数据,会怎样呢?
图 2 插入数据导致页分裂
可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。
另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。
也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。
而重建表,就可以达到这样的目的。
重建表¶
试想一下,如果你现在有一个表 A,需要做空间收缩,为了把表中存在的空洞去掉,你可以怎么做呢?
你可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。
由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。显然地,表 B 的主键索引更紧凑,数据页的利用率也更高。如果我们把表 B 作为临时表,数据从表 A 导入表 B 的操作完成后,用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用。
这里,你可以使用 alter table A engine=InnoDB
命令来重建表。在 MySQL 5.5 版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表 B 不需要你自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。
图 3 改锁表 DDL
显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的。
而在**MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。**
我给你简单描述一下引入了 Online DDL 之后,重建表的流程:
- 建立一个临时文件,扫描表 A 主键的所有数据页;
- 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;
- 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;
- 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;
- 用临时文件替换表 A 的数据文件。
图 4 Online DDL
可以看到,与图 3 过程的不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表 A 做增删改操作。这也就是 Online DDL 名字的来源。
我记得有同学在第 6 篇讲表锁的文章[《全局锁和表锁 :给表加个字段怎么索这么多阻碍?》]的评论区留言说,DDL 之前是要拿 MDL 写锁的,这样还能叫 Online DDL 吗?
确实,图 4 的流程中,alter 语句在启动的时候需要获取 MDL 写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。
为什么要退化呢?为了实现 Online,MDL 读锁不会阻塞增删改操作。
那为什么不干脆直接解锁呢?为了保护自己,禁止其他线程对这个表同时做 DDL。
而对于一个大表来说,Online DDL 最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个 DDL 过程来说,锁的时间非常短。对业务来说,就可以认为是 Online 的。
需要补充说明的是,上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。因此,如果是线上服务,你要很小心地控制操作时间。如果想要比较安全的操作的话,我推荐你使用 GitHub 开源的 gh-ost 来做。
Online 和 inplace¶
说到 Online,我还要再和你澄清一下它和另一个跟 DDL 有关的、容易混淆的概念 inplace 的区别。
你可能注意到了,在图 3 中,我们把表 A 中的数据导出来的存放位置叫作 tmp_table
。这是一个临时表,是在 server 层创建的。
在图 4 中,根据表 A 重建出来的数据是放在 tmp_file
里的,这个临时文件是 InnoDB 在内部创建出来的。整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。
所以,我现在问你,如果你有一个 1TB 的表,现在磁盘间是 1.2TB,能不能做一个 inplace 的 DDL 呢?
答案是不能。因为,tmp_file
也是要占用临时空间的。
我们重建表的这个语句 alter table t engine=InnoDB
,其实隐含的意思是:
alter table t engine=innodb,ALGORITHM=inplace;
跟 inplace 对应的就是拷贝表的方式了,用法是:
alter table t engine=innodb,ALGORITHM=copy;
当你使用 ALGORITHM=copy
的时候,表示的是强制拷贝表,对应的流程就是图 3 的操作过程。
但我这样说你可能会觉得,inplace 跟 Online 是不是就是一个意思?
其实不是的,只是在重建表这个逻辑中刚好是这样而已。
比如,如果我要给 InnoDB 表的一个字段加全文索引,写法是:
alter table t add FULLTEXT(field_name);
这个过程是 inplace 的,但会阻塞增删改操作,是非 Online 的。
如果说这两个逻辑之间的关系是什么的话,可以概括为:
- DDL 过程如果是 Online 的,就一定是 inplace 的;
- 反过来未必,也就是说 inplace 的 DDL,有可能不是 Online 的。截止到 MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引 (SPATIAL index) 就属于这种情况。
最后,我们再延伸一下。
在第 10 篇文章[《MySQL 为什么有时候会选错索引》]的评论区中,有同学问到使用 optimize table
、analyze table
和 alter table
这三种方式重建表的区别。这里,我顺便再简单和你解释一下。
- 从 MySQL 5.6 版本开始,
alter table t engine = InnoDB
(也就是 recreate)默认的就是上面图 4 的流程了; analyze table t
其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;optimize table t
等于recreate+analyze
。
小结¶
现在你已经知道了,如果要收缩一个表,只是 delete 掉表里面不用的数据的话,表文件的大小是不会变的,你还要通过 alter table
命令重建表,才能达到表文件变小的目的。我跟你介绍了重建表的两种实现方式,Online DDL 的方式是可以考虑在业务低峰期使用的,而 MySQL 5.5 及之前的版本,这个命令是会阻塞 DML 的,这个你需要特别小心。
14 count()
这么慢,我该怎么办?¶
在开发系统的时候,你可能经常需要计算一个表的行数,比如一个交易系统的所有变更记录总数。这时候你可能会想,一条 select count(*) from t
语句不就解决了吗?
但是,你会发现随着系统中记录数越来越多,这条语句执行得也会越来越慢。然后你可能就想了,MySQL 怎么这么笨啊,记个总数,每次要查的时候直接读出来,不就好了吗。
那么今天,我们就来聊聊 count(*)
语句到底是怎样实现的,以及 MySQL 为什么会这么实现。然后,我会再和你说说,如果应用中有这种频繁变更并需要统计表行数的需求,业务设计上可以怎么做。
count(*)
的实现方式¶
你首先要明确的是,在不同的 MySQL 引擎中,count(*)
有不同的实现方式。
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行
count(*)
的时候会直接返回这个数,效率很高; - 而 InnoDB 引擎就麻烦了,它执行
count(*)
的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
这里需要注意的是,我们在这篇文章里讨论的是没有过滤条件的 count(*)
,如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
在前面的文章中,我们一起分析了为什么要使用 InnoDB,因为不论是在事务支持、并发能力还是在数据安全方面,InnoDB 都优于 MyISAM。我猜你的表也一定是用了 InnoDB 引擎。这就是当你的记录数越来越多的时候,计算一个表的总行数会越来越慢的原因。
不同的 count 用法¶
在 select count(?) from t
这样的查询语句里面,count(*)
、count(主键 id
)、count(字段)
和 count(1)
等不同用法的性能,有哪些差别。今天谈到了 count(*)
的性能问题,我就借此机会和你详细说明一下这几种用法的性能差别。
需要注意的是,下面的讨论还是基于 InnoDB 引擎的。
这里,首先你要弄清楚 count()
的语义。count()
是一个聚合函数,对于返回的结果集,一行行地判断,如果 count
函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。
所以,count(*)
、count(主键 id
)、count(字段)
和 count(1)
都表示返回满足条件的结果集的总行数;而 count(字段
),则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。
至于分析性能差别的时候,你可以记住这么几个原则:
- server 层要什么就给什么;
- InnoDB 只给必要的值;
- 现在的优化器只优化了
count(*)
的语义为“取行数”,其他“显而易见”的优化并没有做。
这是什么意思呢?接下来,我们就一个个地来看看。
对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
单看这两个用法的差别的话,你能对比出来,count(1)
执行得要比 count(主键 id)
快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。
对于 count(字段) 来说:
- 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;
- 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。
也就是前面的第一条原则,server 层要什么字段,InnoDB 就返回什么字段。
但是 count(*)
是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*)
肯定不是 null,按行累加。
所以结论是:按照效率排序的话,count(字段)
\<count(主键 id)
\<count(1)
≈count(*)
,所以我建议你,尽量使用 count(*)
。
小结¶
今天,我和你聊了聊 MySQL 中获得表行数的两种方法。我们提到了在不同引擎中 count(*) 的实现方式是不一样的,也分析了用缓存系统来存储计数值存在的问题。
其实,把计数放在 Redis 里面,不能够保证计数和 MySQL 表里的数据精确一致的原因,是这两个不同的存储构成的系统,不支持分布式事务,无法拿到精确一致的视图。而把计数值也放在 MySQL 中,就解决了一致性视图的问题。
InnoDB 引擎支持事务,我们利用好事务的原子性和隔离性,就可以简化在业务开发时的逻辑。这也是 InnoDB 引擎备受青睐的原因之一。
15 答疑文章(一):日志和索引相关问题¶
在今天这篇答疑文章更新前,MySQL 实战这个专栏已经更新了 14 篇。在这些文章中,大家在评论区留下了很多高质量的留言。现在,每篇文章的评论区都有热心的同学帮忙总结文章知识点,也有不少同学提出了很多高质量的问题,更有一些同学帮忙解答其他同学提出的问题。
在浏览这些留言并回复的过程中,我倍受鼓舞,也尽我所知地帮助你解决问题、和你讨论。可以说,你们的留言活跃了整个专栏的氛围、提升了整个专栏的质量,谢谢你们。
评论区的大多数留言我都直接回复了,对于需要展开说明的问题,我都拿出小本子记了下来。这些被记下来的问题,就是我们今天这篇答疑文章的素材了。
到目前为止,我已经收集了 47 个问题,很难通过今天这一篇文章全部展开。所以,我就先从中找了几个联系非常紧密的问题,串了起来,希望可以帮你解决关于日志和索引的一些疑惑。而其他问题,我们就留着后面慢慢展开吧。
日志相关问题¶
我在第 2 篇文章[《日志系统:一条 SQL 更新语句是如何执行的?》]中,和你讲到 binlog(归档日志)和 redo log(重做日志)配合崩溃恢复的时候,用的是反证法,说明了如果没有两阶段提交,会导致 MySQL 出现主备数据不一致等问题。
在这篇文章下面,很多同学在问,在两阶段提交的不同瞬间,MySQL 如果发生异常重启,是怎么保证数据完整性的?
现在,我们就从这个问题开始吧。
我再放一次两阶段提交的图,方便你学习下面的内容。
图 1 两阶段提交示意图
这里,我要先和你解释一个误会式的问题。有同学在评论区问到,这个图不是一个 update 语句的执行流程吗,怎么还会调用 commit 语句?
他产生这个疑问的原因,是把**两个“commit”的概念**混淆了:
- 他说的“commit 语句”,是指 MySQL 语法中,用于提交一个事务的命令。一般跟 begin/start transaction 配对使用。
- 而我们图中用到的这个“commit 步骤”,指的是事务提交过程中的一个小步骤,也是最后一步。当这个步骤执行完成后,这个事务就提交完成了。
- “commit 语句”执行的时候,会包含“commit 步骤”。
而我们这个例子里面,没有显式地开启事务,因此这个 update 语句自己就是一个事务,在执行完成后提交事务时,就会用到这个“commit 步骤“。
接下来,我们就一起分析一下**在两阶段提交的不同时刻,MySQL 异常重启会出现什么现象。**
如果在图中时刻 A 的地方,也就是写入 redo log 处于 prepare 阶段之后、写 binlog 之前,发生了崩溃(crash),由于此时 binlog 还没写,redo log 也还没提交,所以崩溃恢复的时候,这个事务会回滚。这时候,binlog 还没写,所以也不会传到备库。到这里,大家都可以理解。
大家出现问题的地方,主要集中在时刻 B,也就是 binlog 写完,redo log 还没 commit 前发生 crash,那崩溃恢复的时候 MySQL 会怎么处理?
我们先来看一下崩溃恢复时的判断规则。
- 如果 redo log 里面的事务是完整的,也就是已经有了 commit 标识,则直接提交;
- 如果 redo log 里面的事务只有完整的 prepare,则判断对应的事务 binlog 是否存在并完整: a. 如果是,则提交事务; b. 否则,回滚事务。
这里,时刻 B 发生 crash 对应的就是 2(a) 的情况,崩溃恢复过程中事务会被提交。
现在,我们继续延展一下这个问题。
追问 1:MySQL 怎么知道 binlog 是完整的?¶
回答:一个事务的 binlog 是有完整格式的:
- statement 格式的 binlog,最后会有 COMMIT;
- row 格式的 binlog,最后会有一个 XID event。
另外,在 MySQL 5.6.2 版本以后,还引入了 binlog-checksum 参数,用来验证 binlog 内容的正确性。对于 binlog 日志由于磁盘原因,可能会在日志中间出错的情况,MySQL 可以通过校验 checksum 的结果来发现。所以,MySQL 还是有办法验证事务 binlog 的完整性的。
追问 2:redo log 和 binlog 是怎么关联起来的?¶
回答:它们有一个共同的数据字段,叫 XID。崩溃恢复的时候,会按顺序扫描 redo log:
- 如果碰到既有 prepare、又有 commit 的 redo log,就直接提交;
- 如果碰到只有 parepare、而没有 commit 的 redo log,就拿着 XID 去 binlog 找对应的事务。
追问 3:处于 prepare 阶段的 redo log 加上完整 binlog,重启就能恢复,MySQL 为什么要这么设计?¶
回答:其实,这个问题还是跟我们在反证法中说到的数据与备份的一致性有关。在时刻 B,也就是 binlog 写完以后 MySQL 发生崩溃,这时候 binlog 已经写入了,之后就会被从库(或者用这个 binlog 恢复出来的库)使用。
所以,在主库上也要提交这个事务。采用这个策略,主库和备库的数据就保证了一致性。
追问 4:如果这样的话,为什么还要两阶段提交呢?干脆先 redo log 写完,再写 binlog。崩溃恢复的时候,必须得两个日志都完整才可以。是不是一样的逻辑?¶
回答:其实,两阶段提交是经典的分布式系统问题,并不是 MySQL 独有的。
如果必须要举一个场景,来说明这么做的必要性的话,那就是事务的持久性问题。
对于 InnoDB 引擎来说,如果 redo log 提交完成了,事务就不能回滚(如果这还允许回滚,就可能覆盖掉别的事务的更新)。而如果 redo log 直接提交,然后 binlog 写入的时候失败,InnoDB 又回滚不了,数据和 binlog 日志又不一致了。
两阶段提交就是为了给所有人一个机会,当每个人都说“我 ok”的时候,再一起提交。
追问 5:不引入两个日志,也就没有两阶段提交的必要了。只用 binlog 来支持崩溃恢复,又能支持归档,不就可以了?¶
回答:这位同学的意思是,只保留 binlog,然后可以把提交流程改成这样:… -> “数据更新到内存” -> “写 binlog” -> “提交事务”,是不是也可以提供崩溃恢复的能力?
答案是不可以。
如果说**历史原因**的话,那就是 InnoDB 并不是 MySQL 的原生存储引擎。MySQL 的原生引擎是 MyISAM,设计之初就有没有支持崩溃恢复。
InnoDB 在作为 MySQL 的插件加入 MySQL 引擎家族之前,就已经是一个提供了崩溃恢复和事务支持的引擎了。
InnoDB 接入了 MySQL 后,发现既然 binlog 没有崩溃恢复的能力,那就用 InnoDB 原有的 redo log 好了。
而如果说**实现上的原因**的话,就有很多了。就按照问题中说的,只用 binlog 来实现崩溃恢复的流程,我画了一张示意图,这里就没有 redo log 了。
图 2 只用 binlog 支持崩溃恢复
这样的流程下,binlog 还是不能支持崩溃恢复的。我说一个不支持的点吧:binlog 没有能力恢复“数据页”。
如果在图中标的位置,也就是 binlog2 写完了,但是整个事务还没有 commit 的时候,MySQL 发生了 crash。
重启后,引擎内部事务 2 会回滚,然后应用 binlog2 可以补回来;但是对于事务 1 来说,系统已经认为提交完成了,不会再应用一次 binlog1。
但是,InnoDB 引擎使用的是 WAL 技术,执行事务的时候,写完内存和日志,事务就算完成了。如果之后崩溃,要依赖于日志来恢复数据页。
也就是说在图中这个位置发生崩溃的话,事务 1 也是可能丢失了的,而且是数据页级的丢失。此时,binlog 里面并没有记录数据页的更新细节,是补不回来的。
你如果要说,那我优化一下 binlog 的内容,让它来记录数据页的更改可以吗?但,这其实就是又做了一个 redo log 出来。
所以,至少现在的 binlog 能力,还不能支持崩溃恢复。
追问 6:那能不能反过来,只用 redo log,不要 binlog?¶
回答:如果只从崩溃恢复的角度来讲是可以的。你可以把 binlog 关掉,这样就没有两阶段提交了,但系统依然是 crash-safe 的。
但是,如果你了解一下业界各个公司的使用场景的话,就会发现在正式的生产库上,binlog 都是开着的。因为 binlog 有着 redo log 无法替代的功能。
一个是归档。redo log 是循环写,写到末尾是要回到开头继续写的。这样历史日志没法保留,redo log 也就起不到归档的作用。
一个就是 MySQL 系统依赖于 binlog。binlog 作为 MySQL 一开始就有的功能,被用在了很多地方。其中,MySQL 系统高可用的基础,就是 binlog 复制。
还有很多公司有异构系统(比如一些数据分析系统),这些系统就靠消费 MySQL 的 binlog 来更新自己的数据。关掉 binlog 的话,这些下游系统就没法输入了。
总之,由于现在包括 MySQL 高可用在内的很多系统机制都依赖于 binlog,所以“鸠占鹊巢”redo log 还做不到。你看,发展生态是多么重要。
追问 7:redo log 一般设置多大?¶
回答:redo log 太小的话,会导致很快就被写满,然后不得不强行刷 redo log,这样 WAL 机制的能力就发挥不出来了。
所以,如果是现在常见的几个 TB 的磁盘的话,就不要太小气了,直接将 redo log 设置为 4 个文件、每个文件 1GB 吧。
追问 8:正常运行中的实例,数据写入后的最终落盘,是从 redo log 更新过来的还是从 buffer pool 更新过来的呢?¶
回答:这个问题其实问得非常好。这里涉及到了,“redo log 里面到底是什么”的问题。
实际上,redo log 并没有记录数据页的完整数据,所以它并没有能力自己去更新磁盘数据页,也就不存在“数据最终落盘,是由 redo log 更新过去”的情况。
- 如果是正常运行的实例的话,数据页被修改以后,跟磁盘的数据页不一致,称为脏页。最终数据落盘,就是把内存中的数据页写盘。这个过程,甚至与 redo log 毫无关系。
- 在崩溃恢复场景中,InnoDB 如果判断到一个数据页可能在崩溃恢复的时候丢失了更新,就会将它读到内存,然后让 redo log 更新内存内容。更新完成后,内存页变成脏页,就回到了第一种情况的状态。
追问 9:redo log buffer 是什么?是先修改内存,还是先写 redo log 文件?¶
回答:这两个问题可以一起回答。
在一个事务的更新过程中,日志是要写多次的。比如下面这个事务:
begin;
insert into t1 ...
insert into t2 ...
commit;
这个事务要往两个表中插入记录,插入数据的过程中,生成的日志都得先保存起来,但又不能在还没 commit 的时候就直接写到 redo log 文件里。
所以,redo log buffer 就是一块内存,用来先存 redo 日志的。也就是说,在执行第一个 insert 的时候,数据的内存被修改了,redo log buffer 也写入了日志。
但是,真正把日志写到 redo log 文件(文件名是 ib_logfile+ 数字),是在执行 commit 语句的时候做的。
(这里说的是事务执行过程中不会“主动去刷盘”,以减少不必要的 IO 消耗。但是可能会出现“被动写入磁盘”,比如内存不够、其他事务提交等情况。这个问题我们会在后面第 22 篇文章《MySQL 有哪些“饮鸩止渴”的提高性能的方法?》中再详细展开)。
单独执行一个更新语句的时候,InnoDB 会自己启动一个事务,在语句执行完成的时候提交。过程跟上面是一样的,只不过是“压缩”到了一个语句里面完成。
以上这些问题,就是把大家提过的关于 redo log 和 binlog 的问题串起来,做的一次集中回答。如果你还有问题,可以在评论区继续留言补充。
业务设计问题¶
业务上有这样的需求,A、B 两个用户,如果互相关注,则成为好友。设计上是有两张表,一个是 like 表,一个是 friend 表,like 表有 user_id
、liker_id
两个字段,我设置为复合唯一索引即 uk_user_id_liker_id
。语句执行逻辑是这样的:
以 A 关注 B 为例: 第一步,先查询对方有没有关注自己(B 有没有关注 A)
select * from like where user_id = B and liker_id = A;
如果有,则成为好友 insert into friend;
没有,则只是单向关注关系 insert into like;
但是如果 A、B 同时关注对方,会出现不会成为好友的情况。因为上面第 1 步,双方都没关注对方。第 1 步即使使用了排他锁也不行,因为记录不存在,行锁无法生效。请问这种情况,在 MySQL 锁层面有没有办法处理?
接下来,我把表模拟出来,方便我们讨论。
CREATE TABLE `like` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`liker_id` int(11) NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uk_user_id_liker_id` (`user_id`,`liker_id`)
) ENGINE=InnoDB;
CREATE TABLE `friend` (
id` int(11) NOT NULL AUTO_INCREMENT,
`friend_1_id` int(11) NOT NULL,
`firned_2_id` int(11) NOT NULL,
UNIQUE KEY `uk_friend` (`friend_1_id`,`firned_2_id`)
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
虽然这个题干中,并没有说到 friend 表的索引结构。但我猜测 friend_1_id
和 friend_2_id
也有索引,为便于描述,我给加上唯一索引。
顺便说明一下,like
是关键字,我一般不建议使用关键字作为库名、表名、字段名或索引名。
在并发场景下,同时有两个人,设置为关注对方,就可能导致无法成功加为朋友关系。
现在,我用你已经熟悉的时刻顺序表的形式,把这两个事务的执行语句列出来:
session 1(逻辑操作: A 喜欢 B) | session 2(操作逻辑:B 喜欢 A) |
---|---|
begin; select * from like where user_id= B and liker_id = A; // 返回空 |
|
begin; select * from like where user_id= A and liker_id = B; // 返回空 |
|
insert into like (user_id, liker_id) values(B, A); |
|
insert into like (user_id, liker_id) values(A, B); |
|
commit; | |
commit; |
由于一开始 A 和 B 之间没有关注关系,所以两个事务里面的 select 语句查出来的结果都是空。
因此,session 1 的逻辑就是“既然 B 没有关注 A,那就只插入一个单向关注关系”。session 2 也同样是这个逻辑。
这个结果对业务来说就是 bug 了。因为在业务设定里面,这两个逻辑都执行完成以后,是应该在 friend 表里面插入一行记录的。
如提问里面说的,“第 1 步即使使用了排他锁也不行,因为记录不存在,行锁无法生效”。不过,我想到了另外一个方法,来解决这个问题。
首先,要给 like
表增加一个字段,比如叫作 relation_ship
,并设为整型,取值 1、2、3。
- 值是 1 的时候,表示 user_id 关注 liker_id;
- 值是 2 的时候,表示 liker_id 关注 user_id;
- 值是 3 的时候,表示互相关注。
然后,当 A 关注 B 的时候,逻辑改成如下所示的样子:
应用代码里面,比较 A 和 B 的大小,如果 A\<B,就执行下面的逻辑
mysql> begin; /* 启动事务 */
insert into `like`(user_id, liker_id, relation_ship) values(A, B, 1) on duplicate key update relation_ship=relation_ship | 1;
select relation_ship from `like` where user_id=A and liker_id=B;
/* 代码中判断返回的 relation_ship,
如果是 1,事务结束,执行 commit
如果是 3,则执行下面这两个语句:
*/
insert ignore into friend(friend_1_id, friend_2_id) values(A,B);
commit;
如果 A>B,则执行下面的逻辑
mysql> begin; /* 启动事务 */
insert into `like`(user_id, liker_id, relation_ship) values(B, A, 2) on duplicate key update relation_ship=relation_ship | 2;
select relation_ship from `like` where user_id=B and liker_id=A;
/* 代码中判断返回的 relation_ship,
如果是 2,事务结束,执行 commit
如果是 3,则执行下面这两个语句:
*/
insert ignore into friend(friend_1_id, friend_2_id) values(B,A);
commit;
这个设计里,让 like
表里的数据保证 user_id < liker_id
,这样不论是 A 关注 B,还是 B 关注 A,在操作like 表的时候,如果反向的关系已经存在,就会出现行锁冲突。
然后,insert … on duplicate
语句,确保了在事务内部,执行了这个 SQL 语句后,就强行占住了这个行锁,之后的 select 判断 relation_ship
这个逻辑时就确保了是在行锁保护下的读操作。
操作符 |
是按位或,连同最后一句 insert 语句里的 ignore,是为了保证重复调用时的幂等性。
这样,即使在双方“同时”执行关注操作,最终数据库里的结果,也是 like 表里面有一条关于 A 和 B 的记录,而且 relation_ship 的值是 3, 并且 friend 表里面也有了 A 和 B 的这条记录。
不知道你会不会吐槽:之前明明还说尽量不要使用唯一索引,结果这个例子一上来我就创建了两个。这里我要再和你说明一下,之前文章我们讨论的,是在“业务开发保证不会插入重复记录”的情况下,着重要解决性能问题的时候,才建议尽量使用普通索引。
而像这个例子里,按照这个设计,业务根本就是保证“我一定会插入重复数据,数据库一定要要有唯一性约束”,这时就没啥好说的了,唯一索引建起来吧。
小结¶
这是专栏的第一篇答疑文章。
我针对前 14 篇文章,大家在评论区中的留言,从中摘取了关于日志和索引的相关问题,串成了今天这篇文章。这里我也要再和你说一声,有些我答应在答疑文章中进行扩展的话题,今天这篇文章没来得及扩展,后续我会再找机会为你解答。所以,篇幅所限,评论区见吧。
最后,虽然这篇是答疑文章,但课后问题还是要有的。
我们创建了一个简单的表 t,并插入一行,然后对这一行做修改。
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL primary key auto_increment,
`a` int(11) DEFAULT NULL
) ENGINE=InnoDB;
mysql> insert into t values(1,2);
这时候,表 t 里有唯一的一行数据 (1,2)。假设,我现在要执行:
mysql> update t set a=2 where id=1;
你会看到这样的结果:
mysql> update t set a=2 where id = 1;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 1 Changed: 0 Warning: 0
结果显示,匹配 (rows matched) 了一行,修改 (Changed) 了 0 行。
仅从现象上看,MySQL 内部在处理这个命令的时候,可以有以下三种选择:
- 更新都是先读后写的,MySQL 读出数据,发现 a 的值本来就是 2,不更新,直接返回,执行结束;
- MySQL 调用了 InnoDB 引擎提供的“修改为 (1,2)”这个接口,但是引擎发现值与原来相同,不更新,直接返回;
- InnoDB 认真执行了“把这个值修改成 (1,2)"这个操作,该加锁的加锁,该更新的更新。
16 “order by”是怎么工作的?¶
在你开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求。还是以我们前面举例用过的市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前 1000 个人的姓名、年龄。
假设这个表的部分定义是这样的:
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;
这时,你的 SQL 语句可以这么写:
select city,name,age from t where city='杭州' order by name limit 1000 ;
这个语句看上去逻辑很清晰,但是你了解它的执行流程吗?今天,我就和你聊聊这个语句是怎么执行的,以及有什么参数会影响执行的行为。
全字段排序¶
前面我们介绍过索引,所以你现在就很清楚了,为避免全表扫描,我们需要在 city 字段加上索引。
在 city 字段上创建索引之后,我们用 explain 命令来看看这个语句的执行情况。
mysql> explain select city,name,age from t where city='杭州' order by name limit 1000 ;
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+----------------+
| 1 | SIMPLE | t | NULL | ref | city | city | 66 | const | 4000 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+----------------+
1 row in set, 1 warning (0.00 sec)
Extra 这个字段中的“Using filesort”表示的就是需要排序,MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer
。
为了说明这个 SQL 查询语句的执行过程,我们先来看一下 city 这个索引的示意图。
图 2 city 字段的索引示意图
从图中可以看到,满足 city='杭州'
条件的行,是从 ID_X
到 ID_(X+N)
的这些记录。
通常情况下,这个语句执行流程如下所示 :
- 初始化
sort_buffer
,确定放入 name、city、age 这三个字段; - 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的
ID_X
; - 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入
sort_buffer
中; - 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的
ID_Y
; - 对
sort_buffer
中的数据按照字段 name 做快速排序; - 按照排序结果取前 1000 行返回给客户端。
我们暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示,下一篇文章中我们还会用到这个排序。
图 3 全字段排序
图中“按 name 排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size
。
sort_buffer_size
,就是 MySQL 为排序开辟的内存(sort_buffer
)的大小。如果要排序的数据量小于 sort_buffer_size
,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。
你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件。
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';
/* @a 保存 Innodb_rows_read 的初始值 */
select variable_value into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read';
/* 执行语句 */
select city, name,age from t where city='杭州' order by name limit 1000;
/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G;
/* @b 保存 Innodb_rows_read 的当前值 */
select variable_value into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read';
/* 计算 Innodb_rows_read 差值 */
select @b-@a;
这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从 number_of_tmp_files
中看到是否使用了临时文件。
{
"filesort_summary": {
"rows": 4000,
"examined_rows": 4000,
"number_of_tmp_files": 12,
"sort_buffer_size": 32768,
"sort_mode": "<sort_key, packed_additional_fields>"
}
}
number_of_tmp_files
表示的是,排序过程中使用的临时文件数。你一定奇怪,为什么需要 12 个文件?内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法。可以这么简单理解,MySQL 将需要排序的数据分成 12 份,每一份单独排序后存在这些临时文件中。然后把这 12 个有序文件再合并成一个有序的大文件。
如果 sort_buffer_size
超过了需要排序的数据量的大小,number_of_tmp_files
就是 0,表示排序可以直接在内存中完成。
否则就需要放在临时文件中排序。sort_buffer_size
越小,需要分成的份数越多,number_of_tmp_files
的值就越大。
接下来,我再和你解释一下图 4 中其他两个值的意思。
我们的示例表中有 4000 条满足 city='杭州'
的记录,所以你可以看到 examined_rows=4000
,表示参与排序的行数是 4000 行。
sort_mode
里面的 packed_additional_fields
的意思是,排序过程对字符串做了“紧凑”处理。即使 name 字段的定义是 varchar(16)
,在排序过程中还是要按照实际长度来分配空间的。
同时,最后一个查询语句 select @b-@a
的返回结果是 4000,表示整个执行过程只扫描了 4000 行。
这里需要注意的是,为了避免对结论造成干扰,我把 internal_tmp_disk_storage_engine
设置成 MyISAM。否则,select @b-@a
的结果会显示为 4001。
这是因为查询 OPTIMIZER_TRACE
这个表时,需要用到临时表,而 internal_tmp_disk_storage_engine
的默认值是 InnoDB。如果使用的是 InnoDB 引擎的话,把数据从临时表取出来的时候,会让 Innodb_rows_read
的值加 1。
rowid 排序¶
在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在 sort_buffer
和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么 sort_buffer
里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。
所以如果单行很大,这个方法效率不够好。
那么,如果 MySQL 认为排序的单行长度太大会怎么做呢?
接下来,我来修改一个参数,让 MySQL 采用另外一种算法。
SET max_length_for_sort_data = 16;
max_length_for_sort_data
,是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。
city、name、age
这三个字段的定义总长度是 36,我把 max_length_for_sort_data
设置为 16,我们再来看看计算过程有什么改变。
新的算法放入 sort_buffer
的字段,只有要排序的列(即 name 字段)和主键 id。
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
- 初始化
sort_buffer
,确定放入两个字段,即 name 和 id; - 从索引 city 找到第一个满足
city='杭州'
条件的主键 id,也就是图中的ID_X
; - 到主键 id 索引取出整行,取 name、id 这两个字段,存入
sort_buffer
中; - 从索引 city 取下一个记录的主键 id;
- 重复步骤 3、4 直到不满足
city='杭州'
条件为止,也就是图中的ID_Y
; - 对
sort_buffer
中的数据按照字段 name 进行排序; - 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
这个执行流程的示意图如下,我把它称为 rowid 排序。
图 5 rowid 排序
对比图 3 的全字段排序流程图你会发现,rowid 排序多访问了一次表 t 的主键索引,就是步骤 7。
需要说明的是,最后的“结果集”是一个逻辑概念,实际上 MySQL 服务端从排序后的 sort_buffer
中依次取出 id,然后到原表查到 city、name 和 age 这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的。
根据这个说明过程和图示,你可以想一下,这个时候执行 select @b-@a
,结果会是多少呢?
现在,我们就来看看结果有什么不同。
首先,图中的 examined_rows
的值还是 4000,表示用于排序的数据是 4000 行。但是 select @b-@a
这个语句的值变成 5000 了。
因为这时候除了排序过程外,在排序完成后,还要根据 id 去原表取值。由于语句是 limit 1000
,因此会多读 1000 行。
{
"filesort_summary": {
"rows": 4000,
"examined_rows": 4000,
"number_of_tmp_files": 10,
"sort_buffer_size": 32768,
"sort_mode": "<sort_key, rowid>"
}
}
从 OPTIMIZER_TRACE
的结果中,你还能看到另外两个信息也变了。
sort_mode
变成了<sort_key, rowid>
,表示参与排序的只有 name 和 id 这两个字段。number_of_tmp_files
变成 10 了,是因为这时候参与排序的行数虽然仍然是 4000 行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。
全字段排序 VS rowid 排序¶
我们来分析一下,从这两个执行流程里,还能得出什么结论。
如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer 中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。
这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。
这个结论看上去有点废话的感觉,但是你要记住它,下一篇文章我们就会用到。
看到这里,你就了解了,MySQL 做排序是一个成本比较高的操作。那么你会问,是不是所有的 order by
都需要排序操作呢?如果不排序就能得到正确的结果,那对系统的消耗会小很多,语句的执行时间也会变得更短。
其实,并不是所有的 order by
语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL 之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。
你可以设想下,如果能够保证从 city 这个索引上取出来的行,天然就是按照 name 递增排序的话,是不是就可以不用再排序了呢?
确实是这样的。
所以,我们可以在这个市民表上创建一个 city 和 name 的联合索引,对应的 SQL 语句是:
alter table t add index city_user(city, name);
作为与 city 索引的对比,我们来看看这个索引的示意图。
图 7 city 和 name 联合索引示意图
在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city='杭州'
的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,name 的值就一定是有序的。
这样整个查询过程的流程就变成了:
- 从索引
(city,name)
找到第一个满足city='杭州'
条件的主键 id; - 到主键 id 索引取出整行,取
name、city、age
三个字段的值,作为结果集的一部分直接返回; - 从索引
(city,name)
取下一个记录主键 id; - 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足
city='杭州'
条件时循环结束。
图 8 引入 (city,name)
联合索引后,查询语句的执行计划
可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用 explain 的结果来印证一下。
mysql> explain select city,name,age from t where city='杭州' order by name limit 1000 ;
+----+-------------+-------+------------+------+----------------+-----------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+----------------+-----------+---------+-------+------+----------+-------+
| 1 | SIMPLE | t | NULL | ref | city,city_user | city_user | 66 | const | 1000 | 100.00 | NULL |
+----+-------------+-------+------------+------+----------------+-----------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
从图中可以看到,Extra 字段中没有 Using filesort
了,也就是不需要排序了。而且由于 (city,name)
这个联合索引本身有序,所以这个查询也不用把 4000 行全都读一遍,只要找到满足条件的前 1000 条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描 1000 次。
既然说到这里了,我们再往前讨论,这个语句的执行流程有没有可能进一步简化呢?不知道你还记不记得,我在第 5 篇文章[《 深入浅出索引(下)》]中,和你介绍的覆盖索引。
这里我们可以再稍微复习一下。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。
按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。
针对这个查询,我们可以创建一个 city、name 和 age 的联合索引,对应的 SQL 语句就是:
alter table t add index city_user_age(city, name, age);
这时,对于 city 字段的值相同的行来说,还是按照 name 字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:
- 从索引
(city,name,age)
找到第一个满足city='杭州'
条件的记录,取出其中的 city、name 和 age 这三个字段的值,作为结果集的一部分直接返回; - 从索引
(city,name,age)
取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回; - 重复执行步骤 2,直到查到第 1000 条记录,或者是不满足
city='杭州'
条件时循环结束。
图 10 引入 (city,name,age) 联合索引后,查询语句的执行流程
然后,我们再来看看 explain 的结果。
mysql> explain select city,name,age from t where city='杭州' order by name limit 1000 ;
+----+-------------+-------+------------+------+--------------------+---------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+--------------------+---------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t | NULL | ref | city,city_user_age | city_user_age | 66 | const | 1 | 100.00 | Using index |
+----+-------------+-------+------------+------+--------------------+---------------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
可以看到,Extra 字段里面多了 Using index
,表示的就是使用了覆盖索引,性能上会快很多。
当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。
小结¶
今天这篇文章,我和你介绍了 MySQL 里面 order by
语句的几种算法流程。
在开发系统的时候,你总是不可避免地会使用到 order by
语句。你心里要清楚每个语句的排序逻辑是怎么实现的,还要能够分析出在最坏情况下,每个语句的执行对系统资源的消耗,这样才能做到下笔如有神,不犯低级错误。
最后,我给你留下一个思考题吧。
假设你的表里面已经有了 city_name(city, name)
这个联合索引,然后你要查杭州和苏州两个城市中所有的市民的姓名,并且按名字排序,显示前 100 条记录。如果 SQL 查询语句是这么写的 :
mysql> select * from t where city in ('杭州',"苏州") order by name limit 100;
那么,这个语句执行的时候会有排序过程吗,为什么?
如果业务端代码由你来开发,需要实现一个在数据库端不需要排序的方案,你会怎么实现呢?
进一步地,如果有分页需求,要显示第 101 页,也就是说语句最后要改成 limit 10000,100
, 你的实现方法又会是什么呢?
回答:
虽然有 (city,name)
联合索引,对于单个 city 内部,name 是递增的。但是由于这条 SQL 语句不是要单独地查一个 city 的值,而是同时查了"杭州"和" 苏州 "两个城市,因此所有满足条件的 name 就不是递增的了。也就是说,这条 SQL 语句需要排序。
那怎么避免排序呢?
这里,我们要用到 (city,name)
联合索引的特性,把这一条语句拆成两条语句,执行流程如下:
- 执行
select * from t where city=“杭州” order by name limit 100;
这个语句是不需要排序的,客户端用一个长度为 100 的内存数组 A 保存结果。 - 执行
select * from t where city=“苏州” order by name limit 100;
用相同的方法,假设结果被存进了内存数组 B。 - 现在 A 和 B 是两个有序数组,然后你可以用归并排序的思想,得到 name 最小的前 100 值,就是我们需要的结果了。
如果把这条 SQL 语句里 limit 100
改成 limit 10000,100
的话,处理方式其实也差不多,即:要把上面的两条语句改成写:
select * from t where city='杭州' order by name limit 10100;
和
select * from t where city='苏州' order by name limit 10100。
这时候数据量较大,可以同时起两个连接一行行读结果,用归并排序算法拿到这两个结果集里,按顺序取第 10001~10100
的 name 值,就是需要的结果了。
当然这个方案有一个明显的损失,就是从数据库返回给客户端的数据量变大了。
所以,如果数据的单行比较大的话,可以考虑把这两条 SQL 语句改成下面这种写法:
select id,name from t where city='杭州' order by name limit 10100;
和
select id,name from t where city='苏州' order by name limit 10100。
然后,再用归并排序的方法取得按 name 顺序第 10001~10100
的 name、id 的值,然后拿着这 100 个 id 到数据库中去查出所有记录。
上面这些方法,需要你根据性能需求和开发的复杂度做出权衡。
17 如何正确地显示随机消息?¶
我在上一篇文章,为你讲解完 order by 语句的几种执行模式后,就想到了之前一个做英语学习 App 的朋友碰到过的一个性能问题。
今天这篇文章,我就从这个性能问题说起,和你说说 MySQL 中的另外一种排序需求,希望能够加深你对 MySQL 排序逻辑的理解。
某英语学习 App 首页有一个随机显示单词的功能,也就是根据每个用户的级别有一个单词表,然后这个用户每次访问首页的时候,都会随机滚动显示三个单词。他们发现随着单词表变大,选单词这个逻辑变得越来越慢,甚至影响到了首页的打开速度。
现在,如果让你来设计这个 SQL 语句,你会怎么写呢?
为了便于理解,我对这个例子进行了简化:去掉每个级别的用户都有一个对应的单词表这个逻辑,直接就是从一个单词表中随机选出三个单词。这个表的建表语句和初始数据的命令如下:
mysql> CREATE TABLE `words` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`word` varchar(64) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=0;
while i<10000 do
insert into words(word) values(concat(char(97+(i div 1000)), char(97+(i % 1000 div 100)), char(97+(i % 100 div 10)), char(97+(i % 10))));
set i=i+1;
end while;
end;;
delimiter ;
call idata();
为了便于量化说明,我在这个表里面插入了 10000 行记录。接下来,我们就一起看看要随机选择 3 个单词,有什么方法实现,存在什么问题以及如何改进。
内存临时表¶
首先,你会想到用 order by rand() 来实现这个逻辑。
mysql> select word from words order by rand() limit 3;
这个语句的意思很直白,随机排序取前 3 个。虽然这个 SQL 语句写法很简单,但执行流程却有点复杂的。
我们先用 explain 命令来看看这个语句的执行情况。
mysql> explain select word from words order by rand() limit 3;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
| 1 | SIMPLE | words | NULL | ALL | NULL | NULL | NULL | NULL | 9980 | 100.00 | Using temporary; Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+---------------------------------+
1 row in set, 1 warning (0.00 sec)
Extra 字段显示 Using temporary
,表示的是需要使用临时表;Using filesort
,表示的是需要执行排序操作。
因此这个 Extra 的意思就是,需要临时表,并且需要在临时表上排序。
你觉得对于临时内存表的排序来说,它会选择哪一种算法呢?回顾一下上一篇文章的一个结论:对于 InnoDB 表来说,执行全字段排序会减少磁盘访问,因此会被优先选择。
我强调了“InnoDB 表”,你肯定想到了,对于内存表,回表过程只是简单地根据数据行的位置,直接访问内存得到数据,根本不会导致多访问磁盘。优化器没有了这一层顾虑,那么它会优先考虑的,就是用于排序的行越少越好了,所以,MySQL 这时就会选择 rowid 排序。
理解了这个算法选择的逻辑,我们再来看看语句的执行流程。同时,通过今天的这个例子,我们来尝试分析一下语句的扫描行数。
这条语句的执行流程是这样的:
- 创建一个临时表。这个临时表使用的是 memory 引擎,表里有两个字段,第一个字段是 double 类型,为了后面描述方便,记为字段 R,第二个字段是
varchar(64)
类型,记为字段 W。并且,这个表没有建索引。 - 从 words 表中,按主键顺序取出所有的 word 值。对于每一个 word 值,调用
rand()
函数生成一个大于 0 小于 1 的随机小数,并把这个随机小数和 word 分别存入临时表的 R 和 W 字段中,到此,扫描行数是 10000。 - 现在临时表有 10000 行数据了,接下来你要在这个没有索引的内存临时表上,按照字段 R 排序。
- 初始化
sort_buffer
。sort_buffer
中有两个字段,一个是 double 类型,另一个是整型。 - 从内存临时表中一行一行地取出 R 值和位置信息,分别存入
sort_buffer
中的两个字段里。这个过程要对内存临时表做全表扫描,此时扫描行数增加 10000,变成了 20000。 - 在
sort_buffer
中根据 R 的值进行排序。注意,这个过程没有涉及到表操作,所以不会增加扫描行数。 - 排序完成后,取出前三个结果的位置信息,依次到内存临时表中取出 word 值,返回给客户端。这个过程中,访问了表的三行数据,总扫描行数变成了 20003。
接下来,我们通过慢查询日志(slow log)来验证一下我们分析得到的扫描行数是否正确。
### Query_time: 0.900376 Lock_time: 0.000347 Rows_sent: 3 Rows_examined: 20003
SET timestamp=1541402277;
select word from words order by rand() limit 3;
其中,Rows_examined:20003
就表示这个语句执行过程中扫描了 20003 行,也就验证了我们分析得出的结论。
这里插一句题外话,在平时学习概念的过程中,你可以经常这样做,先通过原理分析算出扫描行数,然后再通过查看慢查询日志,来验证自己的结论。我自己就是经常这么做,这个过程很有趣,分析对了开心,分析错了但是弄清楚了也很开心。
现在,我来把完整的排序执行流程图画出来。
图 4 随机排序完整流程图 1
图中的 pos 就是位置信息,你可能会觉得奇怪,这里的“位置信息”是个什么概念?在上一篇文章中,我们对 InnoDB 表排序的时候,明明用的还是 ID 字段。
这时候,我们就要回到一个基本概念:MySQL 的表是用什么方法来定位“一行数据”的。
在前面[第 4]和[第 5]篇介绍索引的文章中,有几位同学问到,如果把一个 InnoDB 表的主键删掉,是不是就没有主键,就没办法回表了?
其实不是的。如果你创建的表没有主键,或者把一个表的主键删掉了,那么 InnoDB 会自己生成一个长度为 6 字节的 rowid 来作为主键。
这也就是排序模式里面,rowid 名字的来历。实际上它表示的是:每个引擎用来唯一标识数据行的信息。
- 对于有主键的 InnoDB 表来说,这个 rowid 就是主键 ID;
- 对于没有主键的 InnoDB 表来说,这个 rowid 就是由系统生成的;
- MEMORY 引擎不是索引组织表。在这个例子里面,你可以认为它就是一个数组。因此,这个 rowid 其实就是数组的下标。
到这里,我来稍微小结一下:order by rand() 使用了内存临时表,内存临时表排序的时候使用了 rowid 排序方法。
磁盘临时表¶
那么,是不是所有的临时表都是内存表呢?
其实不是的。tmp_table_size
这个配置限制了内存临时表的大小,默认值是 16M。如果临时表大小超过了 tmp_table_size
,那么内存临时表就会转成磁盘临时表。
磁盘临时表使用的引擎默认是 InnoDB,是由参数 internal_tmp_disk_storage_engine
(MySQL 8.0 已没有此参数,引入了新的临时表引擎 Temporary MyISAM
)控制的。
当使用磁盘临时表的时候,对应的就是一个没有显式索引的 InnoDB 表的排序过程。
为了复现这个过程,我把 tmp_table_size
设置成 1024,把 sort_buffer_size
设置成 32768, 把 max_length_for_sort_data
设置成 16。
set tmp_table_size=1024;
set sort_buffer_size=32768;
set max_length_for_sort_data=16;
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';
/* 执行语句 */
select word from words order by rand() limit 3;
/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G
{
"filesort_priority_queue_optimization": {
"limit": 3,
"chosen": true
},
"filesort_execution": [],
"filesort_summary": {
"memory_available": 32768,
"key_size": 16,
"row_size": 16,
"max_rows_per_buffer": 4,
"num_rows_estimate": 10010,
"num_rows_found": 10000,
"num_initial_chunks_spilled_to_disk": 0,
"peak_memory_used": 96,
"sort_algorithm": "std::sort",
"unpacked_addon_fields": "using_priority_queue",
"sort_mode": "<fixed_sort_key, rowid>"
}
}
然后,我们来看一下这次 OPTIMIZER_TRACE
的结果。
因为将 max_length_for_sort_data
设置成 16,小于 word 字段的长度定义,所以我们看到 sort_mode
里面显示的是 rowid 排序,这个是符合预期的,参与排序的是随机值 R 字段和 rowid 字段组成的行。
这时候你可能心算了一下,发现不对。R 字段存放的随机值就 8 个字节,rowid 是 6 个字节,数据总行数是 10000,这样算出来就有 140000 字节,超过了 sort_buffer_size
定义的 32768 字节了。但是,number_of_tmp_files
的值居然是 0,难道不需要用临时文件吗?
这个 SQL 语句的排序确实没有用到临时文件,采用是 MySQL 5.6 版本引入的一个新的排序算法,即:优先队列排序算法。接下来,我们就看看为什么没有使用临时文件的算法,也就是归并排序算法,而是采用了优先队列排序算法。
其实,我们现在的 SQL 语句,只需要取 R 值最小的 3 个 rowid。但是,如果使用归并排序算法的话,虽然最终也能得到前 3 个值,但是这个算法结束后,已经将 10000 行数据都排好序了。
也就是说,后面的 9997 行也是有序的了。但,我们的查询并不需要这些数据是有序的。所以,想一下就明白了,这浪费了非常多的计算量。
而优先队列算法,就可以精确地只得到三个最小值,执行流程如下:
- 对于这 10000 个准备排序的
(R,rowid)
,先取前三行,构造成一个堆;(对数据结构印象模糊的同学,可以先设想成这是一个由三个元素组成的数组) - 取下一个行
(R’,rowid’)
,跟当前堆里面最大的 R 比较,如果 R’ 小于 R,把这个(R,rowid)
从堆中去掉,换成(R’,rowid’)
; - 重复第 2 步,直到第 10000 个
(R’,rowid’)
完成比较。
这里我简单画了一个优先队列排序过程的示意图。
图 6 优先队列排序算法示例
图 6 是模拟 6 个 (R,rowid)
行,通过优先队列排序找到最小的三个 R 值的行的过程。整个排序过程中,为了最快地拿到当前堆的最大值,总是保持最大值在堆顶,因此这是一个最大堆。
图 5 的 OPTIMIZER_TRACE
结果中,filesort_priority_queue_optimization
这个部分的 chosen=true
,就表示使用了优先队列排序算法,这个过程不需要临时文件,因此对应的 number_of_tmp_files 是 0。
这个流程结束后,我们构造的堆里面,就是这个 10000 行里面 R 值最小的三行。然后,依次把它们的 rowid 取出来,去临时表里面拿到 word 字段,这个过程就跟上一篇文章的 rowid 排序的过程一样了。
我们再看一下上面一篇文章的 SQL 查询语句:
select city,name,age from t where city='杭州' order by name limit 1000 ;
你可能会问,这里也用到了 limit,为什么没用优先队列排序算法呢?原因是,这条 SQL 语句是 limit 1000,如果使用优先队列算法的话,需要维护的堆的大小就是 1000 行的 (name,rowid)
,超过了我设置的 sort_buffer_size
大小,所以只能使用归并排序算法。
总之,不论是使用哪种类型的临时表,order by rand()
这种写法都会让计算过程非常复杂,需要大量的扫描行数,因此排序过程的资源消耗也会很大。
再回到我们文章开头的问题,怎么正确地随机排序呢?
随机排序方法¶
我们先把问题简化一下,如果只随机选择 1 个 word 值,可以怎么做呢?思路上是这样的:
- 取得这个表的主键 id 的最大值 M 和最小值 N;
- 用随机函数生成一个最大值到最小值之间的数 \(X = (M-N) * rand() + N\)
- 取不小于 X 的第一个 ID 的行。
我们把这个算法,暂时称作随机算法 1。这里,我直接给你贴一下执行语句的序列:
select max(id),min(id) into @M,@N from t ;
set @X= floor((@M-@N+1)*rand() + @N);
select * from t where id >= @X limit 1;
这个方法效率很高,因为取 max(id)
和 min(id)
都是不需要扫描索引的,而第三步的 select 也可以用索引快速定位,可以认为就只扫描了 3 行。但实际上,这个算法本身并不严格满足题目的随机要求,因为 ID 中间可能有空洞,因此选择不同行的概率不一样,不是真正的随机。
比如你有 4 个 id,分别是 1、2、4、5,如果按照上面的方法,那么取到 id=4 的这一行的概率是取得其他行概率的两倍。
如果这四行的 id 分别是 1、2、40000、40001 呢?这个算法基本就能当 bug 来看待了。
所以,为了得到严格随机的结果,你可以用下面这个流程:
- 取得整个表的行数,并记为 C。
- 取得 \(Y = floor(C * rand())\)。 floor 函数在这里的作用,就是取整数部分。
- 再用
limit Y,1
取得一行。
我们把这个算法,称为随机算法 2。下面这段代码,就是上面流程的执行语句的序列。
select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;
由于 limit 后面的参数不能直接跟变量,所以我在上面的代码中使用了 prepare+execute 的方法。你也可以把拼接 SQL 语句的方法写在应用程序中,会更简单些。
这个随机算法 2,解决了算法 1 里面明显的概率不均匀问题。
MySQL 处理 limit Y,1 的做法就是按顺序一个一个地读出来,丢掉前 Y 个,然后把下一个记录作为返回结果,因此这一步需要扫描 Y+1 行。再加上,第一步扫描的 C 行,总共需要扫描 C+Y+1 行,执行代价比随机算法 1 的代价要高。
当然,随机算法 2 跟直接 order by rand()
比起来,执行代价还是小很多的。
现在,我们再看看,如果我们按照随机算法 2 的思路,要随机取 3 个 word 值呢?你可以这么做:
- 取得整个表的行数,记为 C;
- 根据相同的随机方法得到 Y1、Y2、Y3;
- 再执行三个 limit Y, 1 语句得到三行数据。
我们把这个算法,称作随机算法 3。下面这段代码,就是上面流程的执行语句的序列。
select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
-- 在应用代码里面取 Y1、Y2、Y3 值,拼出 SQL 后执行
select * from t limit @Y1,1;
select * from t limit @Y2,1;
select * from t limit @Y3,1;
小结¶
今天这篇文章,我是借着随机排序的需求,跟你介绍了 MySQL 对临时表排序的执行过程。
如果你直接使用 order by rand()
,这个语句需要 Using temporary 和 Using filesort,查询的执行代价往往是比较大的。所以,在设计的时候你要量避开这种写法。
今天的例子里面,我们不是仅仅在数据库内部解决问题,还会让应用代码配合拼接 SQL 语句。在实际应用的过程中,比较规范的用法就是:尽量将业务逻辑写在业务代码中,让数据库只做“读写数据”的事情。因此,这类方法的应用还是比较广泛的。
18 为什么这些SQL语句逻辑相同,性能却差异巨大?¶
在 MySQL 中,有很多看上去逻辑相同,但性能却差异巨大的 SQL 语句。对这些语句使用不当的话,就会不经意间导致整个数据库的压力变大。
我今天挑选了三个这样的案例和你分享。希望再遇到相似的问题时,你可以做到举一反三、快速解决问题。
案例一:条件字段函数操作¶
假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid)、交易员 id(operator)、交易时间(t_modified
)等字段。为了便于描述,我们先忽略其他字段。这个表的建表语句如下:
CREATE TABLE `tradelog` (
`id` int(11) NOT NULL,
`tradeid` varchar(32) DEFAULT NULL,
`operator` int(11) DEFAULT NULL,
`t_modified` datetime DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `tradeid` (`tradeid`),
KEY `t_modified` (`t_modified`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-- 填充数据
DELIMITER $$
CREATE PROCEDURE `populate_tradelog`()
BEGIN
DECLARE i INT DEFAULT 1;
DECLARE tradeid VARCHAR(32);
DECLARE operator INT;
DECLARE t_modified DATETIME;
WHILE i <= 100000 DO
SET tradeid = CONCAT('TRADEID-', i);
SET operator = FLOOR(RAND() * 1000);
SET t_modified = DATE_ADD(NOW(), INTERVAL -FLOOR(RAND() * 365) DAY);
INSERT INTO tradelog (id, tradeid, operator, t_modified)
VALUES (i, tradeid, operator, t_modified);
SET i = i + 1;
END WHILE;
END$$
DELIMITER ;
-- populate
CALL populate_tradelog();
假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是,要统计发生在所有年份中 7 月份的交易记录总数。这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:
mysql> select count(*) from tradelog where month(t_modified)=7;
由于 t_modified
字段上有索引,于是你就很放心地在生产库中执行了这条语句,但却发现执行了特别久,才返回了结果。
如果你问 DBA 同事为什么会出现这样的情况,他大概会告诉你:如果对字段做了函数计算,就用不上索引了,这是 MySQL 的规定。
现在你已经学过了 InnoDB 的索引结构了,可以再追问一句为什么?为什么条件是 where t_modified='2018-7-1’
的时候可以用上索引,而改成 where month(t_modified)=7
的时候就不行了?
下面是这个 t_modified
索引的示意图。方框上面的数字就是 month()
函数对应的值。
图 1 t_modified 索引示意图
如果你的 SQL 语句条件用的是 where t_modified='2018-7-1'
的话,引擎就会按照上面绿色箭头的路线,快速定位到 t_modified='2018-7-1'
需要的结果。
实际上,B+ 树提供的这个快速定位能力,来源于同一层兄弟节点的有序性。
但是,如果计算 month()
函数的话,你会看到传入 7 的时候,在树的第一层就不知道该怎么办了。
也就是说,对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
需要注意的是,优化器并不是要放弃使用这个索引。
在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified
,优化器对比索引大小后发现,索引 t_modified
更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified
。
接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。
mysql> explain select count(*) from tradelog where month(t_modified)=7;
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+--------------------------+
| 1 | SIMPLE | tradelog | NULL | index | NULL | t_modified | 6 | NULL |100335| 100.00 | Using where; Using index |
+----+-------------+----------+------------+-------+---------------+------------+---------+------+------+----------+--------------------------+
key="t_modified"
表示的是,使用了 t_modified
这个索引;我在测试表数据中插入了 10 万行数据,rows=100335
,说明这条语句扫描了整个索引的所有值;Extra 字段的 Using index,表示的是使用了覆盖索引。
也就是说,由于在 t_modified
字段加了 month()
函数操作,导致了全索引扫描。为了能够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下面这个写法,优化器就能按照我们预期的,用上 t_modified
索引的快速定位能力了。
mysql> select count(*) from tradelog where
-> (t_modified >= '2016-7-1' and t_modified<'2016-8-1') or
-> (t_modified >= '2017-7-1' and t_modified<'2017-8-1') or
-> (t_modified >= '2018-7-1' and t_modified<'2018-8-1');
当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。
到这里我给你说明了,由于加了 month()
函数操作,MySQL 无法再使用索引快速定位功能,而只能使用全索引扫描。
不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引。比如,对于 select * from tradelog where id + 1 = 10000
这个 SQL 语句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1
才可以。
案例二:隐式类型转换¶
接下来我再跟你说一说,另一个经常让程序员掉坑里的例子。
我们一起看一下这条 SQL 语句:
mysql> select * from tradelog where tradeid=110717;
交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32)
,而输入的参数却是整型,所以需要做类型转换。
那么,现在这里就有两个问题:
- 数据类型转换的规则是什么?
- 为什么有数据类型转换,就需要走全索引扫描?
先来看第一个问题,你可能会说,数据库里面类型这么多,这种数据类型转换规则更多,我记不住,应该怎么办呢?
这里有一个简单的方法,看 select '10' > 9
的结果:
- 如果规则是“将字符串转成数字”,那么就是做数字比较,结果应该是 1;
- 如果规则是“将数字转成字符串”,那么就是做字符串比较,结果应该是 0。
验证结果如下所示。
mysql> select '10' > 9;
+----------+
| '10' > 9 |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)
从图中可知,select '10' > 9
返回的是 1,所以你就能确认 MySQL 里的转换规则了:在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。
这时,你再看这个全表扫描的语句:
mysql> select * from tradelog where tradeid=110717;
就知道对于优化器来说,这个语句相当于:
mysql> select * from tradelog where CAST(tradid AS signed int) = 110717;
也就是说,这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能。
现在,我留给你一个小问题,id 的类型是 int,如果执行下面这个语句,是否会导致全表扫描呢?
select * from tradelog where id='83126';
你可以先自己分析一下,再到数据库里面去验证确认。
接下来,我们再来看一个稍微复杂点的例子。
案例三:隐式字符编码转换¶
假设系统里还有另外一个表 trade_detail
,用于记录交易的操作细节。为了便于量化分析和复现,我往交易日志表 tradelog 和交易详情表 trade_detail
这两个表里插入一些数据。
mysql> CREATE TABLE `trade_detail` (
`id` int(11) NOT NULL,
`tradeid` varchar(32) DEFAULT NULL,
`trade_step` int(11) DEFAULT NULL, /* 操作步骤 */
`step_info` varchar(32) DEFAULT NULL, /* 步骤信息 */
PRIMARY KEY (`id`),
KEY `tradeid` (`tradeid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into trade_detail values(1, 'TRADEID-1', 1, 'add');
insert into trade_detail values(2, 'TRADEID-1', 2, 'update');
insert into trade_detail values(3, 'TRADEID-1', 3, 'commit');
insert into trade_detail values(4, 'TRADEID-2', 1, 'add');
insert into trade_detail values(5, 'TRADEID-2', 2, 'update');
insert into trade_detail values(6, 'TRADEID-2', 3, 'update again');
insert into trade_detail values(7, 'TRADEID-2', 4, 'commit');
insert into trade_detail values(8, 'TRADEID-3', 1, 'add');
insert into trade_detail values(9, 'TRADEID-3', 2, 'update');
insert into trade_detail values(10, 'TRADEID-3', 3, 'update again');
insert into trade_detail values(11, 'TRADEID-3', 4, 'commit');
这时候,如果要查询 id=2
的交易的所有操作步骤信息,SQL 语句可以这么写:
select d.* from tradelog t, trade_detail d where d.tradeid=t.tradeid and t.id=2; /* 语句 Q1*/
explain 结果
mysql> explain select d.* from tradelog t, trade_detail d where d.tradeid=t.tradeid and t.id=2; /* 语句 Q1*/;
+----+-------------+-------+------------+-------+-----------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+-----------------+---------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t | NULL | const | PRIMARY,tradeid | PRIMARY | 4 | const | 1 | 100.00 | NULL |
| 1 | SIMPLE | d | NULL | ALL | NULL | NULL | NULL | NULL | 11 | 100.00 | Using where |
+----+-------------+-------+------------+-------+-----------------+---------+---------+-------+------+----------+-------------+
我们一起来看下这个结果:
- 第一行显示优化器会先在交易记录表 tradelog 上查到 id=2 的行,这个步骤用上了主键索引,rows=1 表示只扫描一行;
- 第二行
key=NULL
,表示没有用上交易详情表trade_detail
上的 tradeid 索引,进行了全表扫描。
在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail
表里查询匹配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail
称为被驱动表,把 tradeid 称为关联字段。
接下来,我们看下这个 explain 结果表示的执行流程:
图 5 语句 Q1 的执行过程
图中:
- 第 1 步,是根据 id 在 tradelog 表里找到 L2 这一行;
- 第 2 步,是从 L2 中取出 tradeid 字段的值;
- 第 3 步,是根据 tradeid 值到
trade_detail
表中查找条件匹配的行。explain 的结果里面第二行的key=NULL
表示的就是,这个过程是通过遍历主键索引的方式,一个一个地判断 tradeid 的值是否匹配。
进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail
里 tradeid 字段上是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但这里并没有。
如果你去问 DBA 同学,他们可能会告诉你,因为这两个表的字符集不同,一个是 utf8,一个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。这个回答,也是通常你搜索这个问题时会得到的答案。
但是你应该再追问一下,为什么字符集不同就用不上索引呢?
我们说问题是出在执行步骤的第 3 步,如果单独把这一步改成 SQL 语句的话,那就是:
mysql> select * from trade_detail where tradeid=$L2.tradeid.value;
其中,$L2.tradeid.value
的字符集是 utf8mb4
。
参照前面的两个例子,你肯定就想到了,字符集 utf8mb4
是 utf8 的超集,所以当这两个类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字符集,再做比较。
因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4
,再跟 L2 做比较。
也就是说,实际上这个语句等同于下面这个写法:
select * from trade_detail where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value;
CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集。
这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能。
到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因。
作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的操作者是谁”,再来看下这个语句和它的执行计划。
mysql>select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;
explain 结果
mysql> explain select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE | d | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |
| 1 | SIMPLE | l | NULL | ref | tradeid | tradeid | 131 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
这个语句里 trade_detail
表成了驱动表,但是 explain 结果的第二行显示,这次的查询操作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。
这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?我们来分析一下。
假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步),被驱动表 tradelog 上执行的就是类似这样的 SQL 语句:
select operator from tradelog where traideid =$R4.tradeid.value;
这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所以这个过程就被改写成:
select operator from tradelog where traideid =CONVERT($R4.tradeid.value USING utf8mb4);
你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。
理解了原理以后,就可以用来指导操作了。如果要优化语句
select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;
的执行过程,有两种做法:
-
比较常见的优化方法是,把
trade_detail
表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null;
-
如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
mysql> select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2;
SQL 语句优化后的 explain 结果
mysql> explain select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2;
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE | l | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |
| 1 | SIMPLE | d | NULL | ref | tradeid | tradeid | 99 | const | 4 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
这里,我主动把 l.tradeid 转成 utf8,就避免了被驱动表上的字符编码转换,从 explain 结果可以看到,这次索引走对了。
案例四:超过字段长度查询¶
表结构如下:
mysql> CREATE TABLE `table_a` (
`id` int(11) NOT NULL,
`b` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `b` (`b`)
) ENGINE=InnoDB;
假设现在表里面,有 100 万行数据,其中有 10 万行数据的 b 的值是’1234567890’, 假设现在执行语句是这么写的:
mysql> select * from table_a where b='1234567890abcd';
这时候,MySQL 会怎么执行呢?
最理想的情况是,MySQL 看到字段 b 定义的是 varchar(10)
,那肯定返回空呀。可惜,MySQL 并没有这么做。
那要不,就是把 '1234567890abcd'
拿到索引里面去做匹配,肯定也没能够快速判断出索引树 b 上并没有这个值,也很快就能返回空结果。
但实际上,MySQL 也不是这么做的。
这条 SQL 语句的执行很慢,流程是这样的:
- 在传给引擎执行的时候,做了字符截断。因为引擎里面这个行只定义了长度是 10,所以只截了前 10 个字节,就是
'1234567890'
进去做匹配; - 这样满足条件的数据有 10 万行;
- 因为是
select *
, 所以要做 10 万次回表; - 但是每次回表以后查出整行,到 server 层一判断,b 的值都不是
’1234567890abcd'
- 返回结果是空。
这个例子,是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作,但是最终在拿到结果后,server 层还是要做一轮判断的。
小结¶
今天我给你举了三个例子,其实是在说同一件事儿,即:对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
第二个例子是隐式类型转换,第三个例子是隐式字符编码转换,它们都跟第一个例子一样,因为要求在索引字段上做函数操作而导致了全索引扫描。
MySQL 的优化器确实有“偷懒”的嫌疑,即使简单地把 where id+1=1000 改写成 where id=1000-1 就能够用上索引快速查找,也不会主动做这个语句重写。
因此,每次你的业务代码升级时,把可能出现的、新的 SQL 语句 explain 一下,是一个很好的习惯。
19 为什么我只查一行的语句,也执行这么慢?¶
一般情况下,如果我跟你说查询性能优化,你首先会想到一些复杂的语句,想到查询需要返回大量的数据。但有些情况下,“查一行”,也会执行得特别慢。今天,我就跟你聊聊这个有趣的话题,看看什么情况下,会出现这个现象。
需要说明的是,如果 MySQL 数据库本身就有很大的压力,导致数据库服务器 CPU 占用率很高或 ioutil(IO 利用率)很高,这种情况下所有语句的执行都有可能变慢,不属于我们今天的讨论范围。
为了便于描述,我还是构造一个表,基于这个表来说明今天的问题。这个表有两个字段 id 和 c,并且我在里面插入了 10 万行记录。
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=100000)do
insert into t values(i,i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
接下来,我会用几个不同的场景来举例,有些是前面的文章中我们已经介绍过的知识点,你看看能不能一眼看穿,来检验一下吧。
等 flush¶
我在表 t 上,执行下面的 SQL 语句:
mysql> select * from information_schema.processlist where id=1;
这里,我先卖个关子。
我查出来这个线程的状态是 Waiting for table flush
,你可以设想一下这是什么原因。
mysql> select * from information_schema.PROCESSLIST where id=6;
+----+-----------------+-----------+------+---------+-------+------------------------+----------------------------+
| ID | USER | HOST | DB | COMMAND | TIME | STATE | INFO |
+----+-----------------+-----------+------+---------+-------+------------------------+----------------------------+
| 6 | root | localhost | test | Query | 622 | Waiting for table flush| select * from t where id= 1|
+----+-----------------+-----------+------+---------+-------+------------------------+----------------------------+
这个状态表示的是,现在有一个线程正要对表 t 做 flush 操作。MySQL 里面对表做 flush 操作的用法,一般有以下两个:
flush tables t with read lock;
flush tables with read lock;
这两个 flush 语句,如果指定表 t 的话,代表的是只关闭表 t;如果没有指定具体的表名,则表示关闭 MySQL 里所有打开的表。
但是正常这两个语句执行起来都很快,除非它们也被别的线程堵住了。
所以,出现 Waiting for table flush 状态的可能情况是:有一个 flush tables 命令被别的语句堵住了,然后它又堵住了我们的 select 语句。
等行锁¶
现在,经过了表级锁的考验,我们的 select 语句终于来到引擎里了。
mysql> select * from t where id=1 lock in share mode;
上面这条语句的用法你也很熟悉了,我们在第 8 篇[《事务到底是隔离的还是不隔离的?》]文章介绍当前读时提到过。
由于访问 id=1 这个记录时要加读锁,如果这时候已经有一个事务在这行记录上持有一个写锁,我们的 select 语句就会被堵住。
复现步骤和现场如下:
Session A | Session B |
---|---|
begin; update t set c = c + 1 where id = 1; |
|
select * from where id = 1 lock in share mode; |
行锁复现
mysql> show processlist;
+----+-----------------+-----------+------+---------+-------+------------------------+-----------------------------------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-----------------+-----------+------+---------+-------+------------------------+-----------------------------------------------+
| 4 | event_scheduler | localhost | NULL | Daemon | 75402 | Waiting on empty queue | NULL |
| 20 | root | localhost | test | Query | 0 | starting | show processlist |
| 21 | root | localhost | test | Query | 7 | statistics | select * from t where id=1 lock in share mode |
+----+-----------------+-----------+------+---------+-------+------------------------+-----------------------------------------------+
3 rows in set (0.00 sec)
显然,session A 启动了事务,占有写锁,还不提交,是导致 session B 被堵住的原因。
这个问题并不难分析,但问题是怎么查出是谁占着这个写锁。如果你用的是 MySQL 5.7 版本,可以通过 sys.innodb_lock_waits
表查到。
查询方法是:
mysql> select * from sys.innodb_lock_waits where locked_table='`test`.`t`' \G;
*************************** 1. row ***************************
wait_started: 2023-02-01 11:57:20
wait_age: 00:00:01
wait_age_secs: 1
locked_table: `test`.`t`
locked_table_schema: test
locked_table_name: t
locked_table_partition: NULL
locked_table_subpartition: NULL
locked_index: PRIMARY
locked_type: RECORD
waiting_trx_id: 421933896469888
waiting_trx_started: 2023-02-01 11:57:20
waiting_trx_age: 00:00:01
waiting_trx_rows_locked: 1
waiting_trx_rows_modified: 0
waiting_pid: 21
waiting_query: select * from t where id=1 lock in share mode
waiting_lock_id: 140458919759232:488:4:3:140458768951320
waiting_lock_mode: S,REC_NOT_GAP
blocking_trx_id: 588483
blocking_pid: 20
blocking_query: select * from sys.innodb_lock_waits where locked_table='`test`.`t`'
blocking_lock_id: 140458919758376:488:4:3:140458768946712
blocking_lock_mode: X,REC_NOT_GAP
blocking_trx_started: 2023-02-01 11:56:23
blocking_trx_age: 00:00:58
blocking_trx_rows_locked: 1
blocking_trx_rows_modified: 0
sql_kill_blocking_query: KILL QUERY 20
sql_kill_blocking_connection: KILL 20
可以看到,这个信息很全,20 号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式,就是 KILL QUERY 20
或 KILL 20
。
不过,这里不应该显示 KILL QUERY 20
。这个命令表示停止 20 号线程当前正在执行的语句,而这个方法其实是没有用的。因为占有行锁的是 update 语句,这个语句已经是之前执行完成了的,现在执行 KILL QUERY,无法让这个事务去掉 id=1 上的行锁。
实际上,KILL 20 才有效,也就是说直接断开这个连接。这里隐含的一个逻辑就是,连接被断开的时候,会自动回滚这个连接里面正在执行的线程,也就释放了 id=1 上的行锁。
小结¶
今天我给你举了在一个简单的表上,执行“查一行”,可能会出现的被锁住和执行慢的例子。这其中涉及到了表锁、行锁和一致性读的概念。
在实际使用中,碰到的场景会更复杂。但大同小异,你可以按照我在文章中介绍的定位方法,来定位并解决问题。